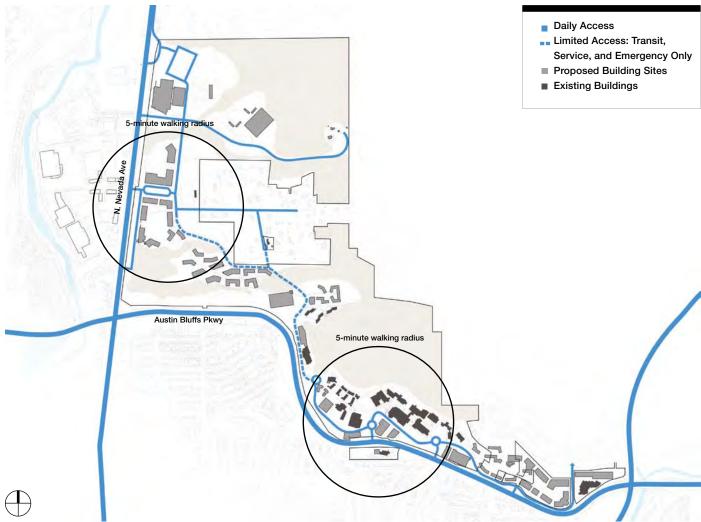

Master Plan

In accordance with the goals of the UCCS 2020 Strategic Plan, the Master Plan provides a framework for "responsible campus stewardship that minimizes ... environmental impact, protects ... financial resources and nurtures a sense of place" (UCCS 2020 Strategic Plan, Goal 7). Layers of traditional and green infrastructure support the growth of a functional and sustainable campus organized around a spine connecting several districts. Each district has a different mix of uses and nodes of activity that define its unique character. While there are campus-wide unifying elements, these expressions of difference provide a changing landscape to experience while travelling across the campus.

CAMPUS-WIDE SYSTEMS



Campus uses are organized in clusters across the campus.

Building Use

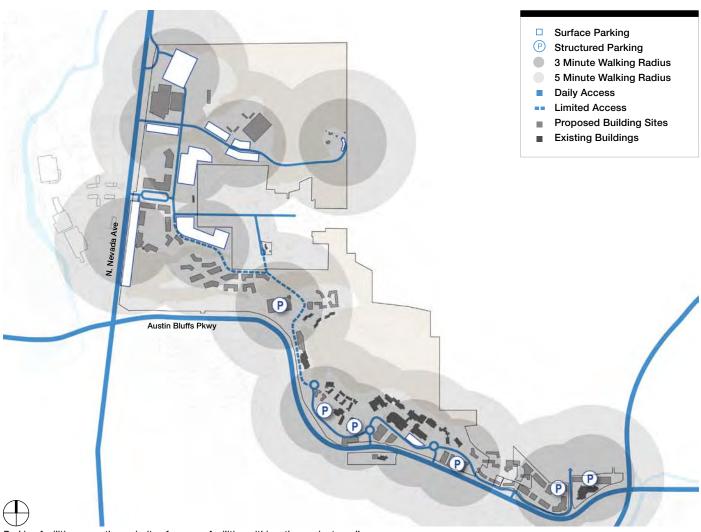
At full build-out, UCCS buildings are organized in clusters along the spine. The Core Campus is preserved and enhanced by a mix of uses that add academic facilities and housing where capacity exists. On the East Campus, a housing village and academic expansion around University Hall continues the pattern of living-learning districts. Athletics facilities are consolidated into an athletics complex along North Nevada Avenue, while

the Student Recreation Center continues to expand on its current site. Academic facilities with public interface components, including Visual and Performing Arts and the Health and Wellness Village, are strategically planned for the North Nevada edge. A new academic village consisting of a mix of academic and residential uses connects the North Campus to the Core Campus.

Access is limited between Summit Village and the North Nevada district to allow the shuttle to operate more efficiently.

Automobile Access

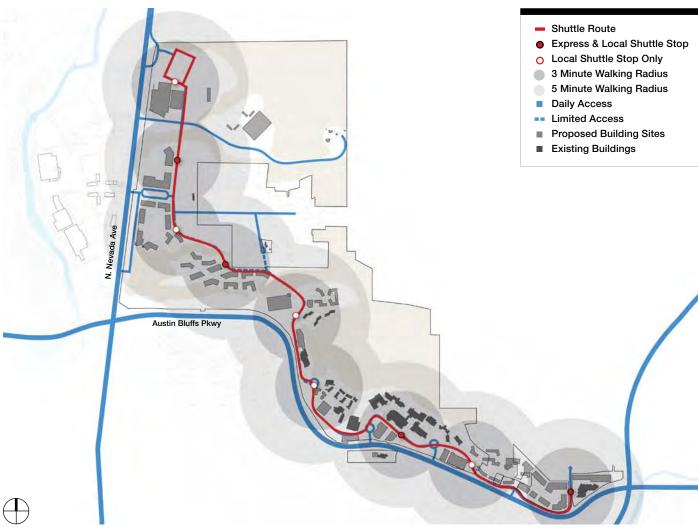
A large percentage of the university community drives to campus. While the university will continue to promote alternative modes of transportation, accommodating personal vehicles remains an important component of the campus transportation system. The Master Plan establishes a circulation system that allows daily traffic to access the Core Campus, the public facilities along North Nevada, and all proposed parking areas. It

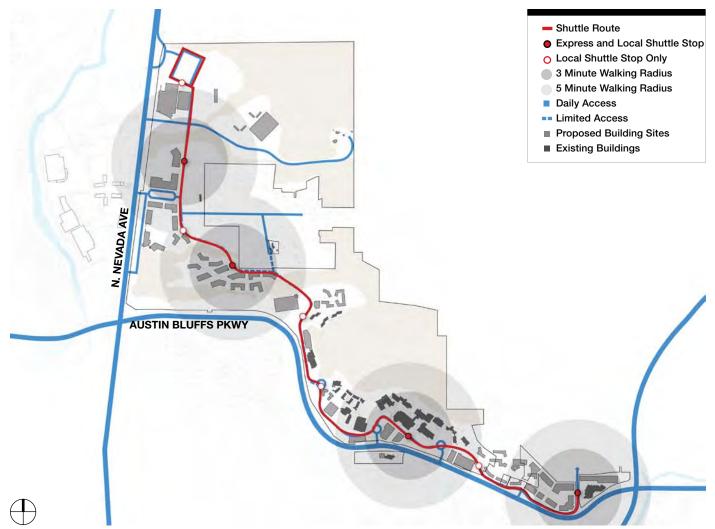

acknowledges, however, that daily traffic does not need access to all areas of the campus: the spine between Alpine Village and North Nevada will be reserved for shuttle transit, pedestrians, and bicyclists only and will close to daily traffic. This supports the most efficient operation of the parking and shuttle systems to reduce dependence on personal vehicles for travel within the campus.

Parking

The Master Plan mixes structured and surface parking to provide over 8,000 parking spaces at full build-out. Parking facilities need to serve all campus destinations, but facilities with differing peak parking time frames can share capacity to create greater efficiency within the system. The parking plan facilitates a "park once" system, where drivers park at either a North or Core Campus facility when they arrive for the day and walk, bike, or take the shuttle to move between on-campus destinations.

Even after it is developed more intensively, the North Campus will continue to function as a satellite surface parking resource for the Core Campus. The Visual and Performing Arts Center, arena, and other athletic facilities will take advantage of these lots to provide parking for their events during off-peak evening and weekend hours.


In the short term, the Core Campus maintains its mix of structured and surface parking. However, as financing for structured parking becomes available, parking garages will be added to the North and Core Campus on strategic sites to enable full build-out of the Core Campus.


Parking facilities serve the majority of campus facilities within a three minute walk.

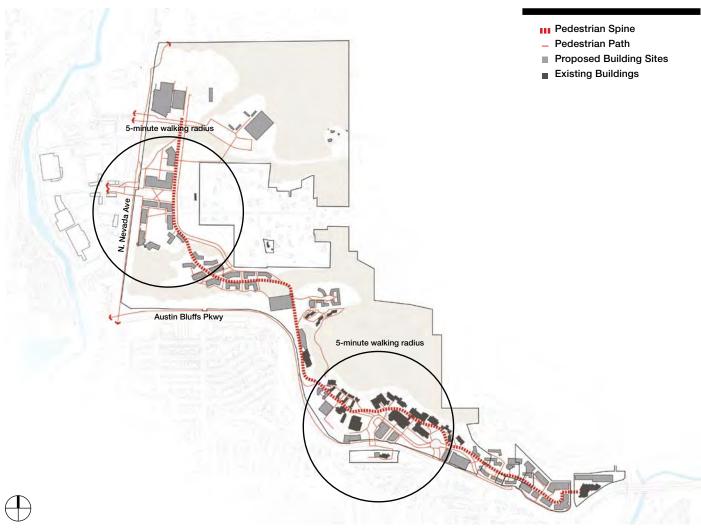
Internal Shuttle

As the campus grows and academic uses extend beyond quick walking distance, efficient operation of the campus shuttle will take on an even more important role. While the current shuttle routes require transit vehicles to use public streets to access the North Campus, the Master Plan designates a shuttle route as part of the spine travelling entirely on UCCS property, improving its efficiency. Between the Core Campus and the North Campus, daily traffic will be prohibited from using the shuttle route, preventing traffic congestion from slowing its operation.

With nine stops, the shuttle serves most campus facilities within a three minute walk.

With 4 stops, an express shuttle serves the major academic districts.

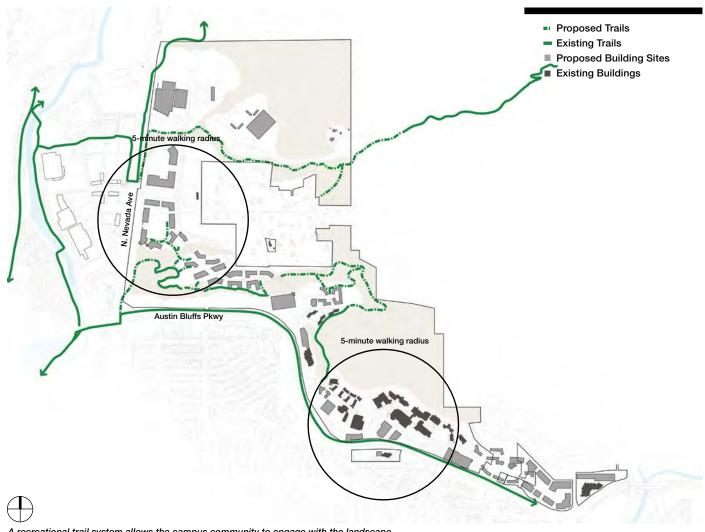
The shuttle route needs to stop frequently enough to provide access to all parts of the campus and facilitate handicap accessible routes from shuttle stops to every building. The Master Plan shuttle proposal achieves this with seven stops, but acknowledges that this number of stops may not create short enough headway times to facilitate class changes. An express bus route operating during key class change times will stop only at nodes of classroom activity, including the North Nevada edge, the Core Campus, and the East Campus, providing quick access between these key destinations.


Pedestrian Spine and Paths

The pedestrian spine in the Core Campus extends to connect University Hall to the proposed arena, serving as the organizing element of campus. Despite the campus' significant topography, the pedestrian spine follows a route that falls at approximately a five percent slope for nearly its entire length between Alpine Village and the proposed new development along North Nevada Avenue. This relatively gentle slope creates a handicap accessible route through the campus. The overall distance between University Hall and the Arena along the pedestrian spine is 2.25 miles.

Across most of the campus, the pedestrian spine is separated from automobile traffic to provide a comfortable pedestrian-only environment. These sorts

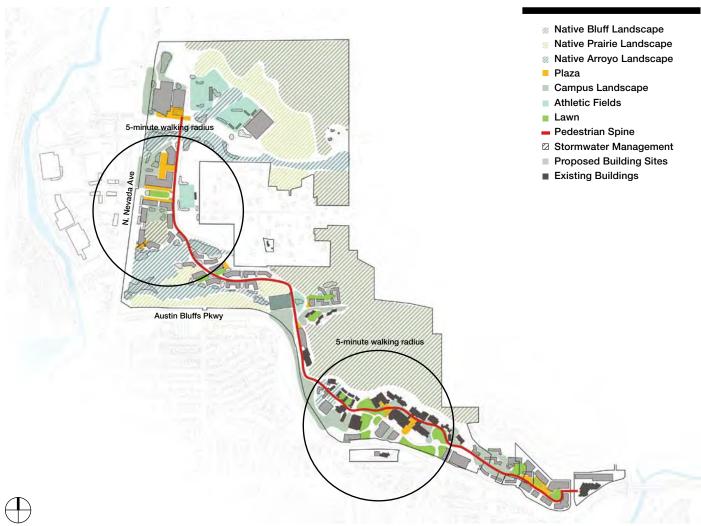
of high quality walks make the trip seem shorter and encourage walking. In some cases, however, the pedestrian spine runs alongside a campus road. In these instances, planting or other means could be considered to ensure that pedestrians feel separated from auto traffic.


The pedestrian spine is the most prominent aspect of the pedestrian path network on campus. Providing a pleasant, complete, and interconnected pedestrian path system that accesses all campus destinations facilitates mobility by encouraging the campus community to walk: longer walks feel much shorter when the quality of the walk is pleasant.

Trails

The natural-surface trail system expands campus-wide pedestrian access, providing alternative linkages to residential, academic, and recreational facilities while crossing the natural drainage corridors, bluffs, varied plant communities, and views unique to the UCCS Campus. In addition, the campus trail system connects through University Village Colorado to the Pikes Peak Greenway as well as to the City's multi-use trail system, creating an expansive recreational opportunity with access to shopping, employment, off-campus housing, and many Colorado Springs' resources.

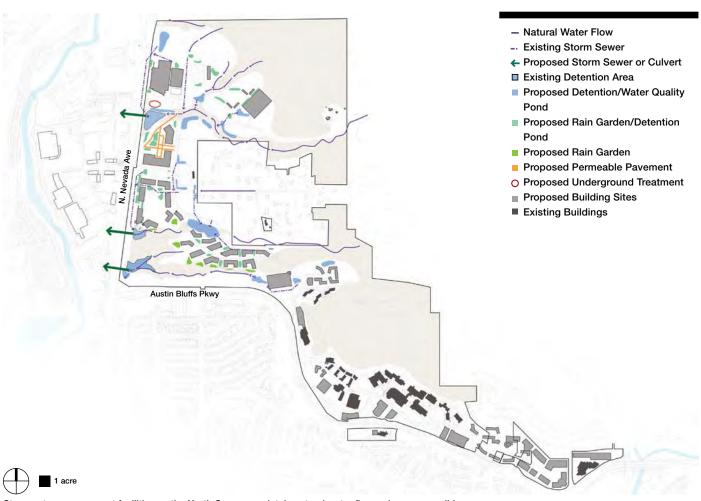
The 2011-2012 Facilities Master Plan includes accommodation of a campus trail system for both campus access and recreational use. After funding is identified, a more detailed micro-master plan of the recreational trail system will be completed during the 2012-2013 academic year, which will include campus input, appropriate consideration for ADA access, and review processes, and will be considered an addendum to the facilities master plan.


Open Space

The campus open space network today consists of urban public spaces located along the spine and areas of preserved native landscape, particularly in the bluffs. The West Lawn has provided the opportunity for programmed and informal passive recreation that was previously missing on campus.

The Master Plan shows that as the campus expands, the open space network also expands and diversifies. Native landscapes are developed that allow the community to engage the landscape without causing environmental harm. Additional open lawns allow for informal, passive recreation opportunities that are lacking on campus today.

Preserving native landscape establishes a unique sense of place, fulfilling one of the UCCS 2020 Strategic Plan goals for sustainability. The native landscape in the bluffs is preserved above the Core Campus and the


North Campus, linking the two. This feature defines the North Campus character with dramatic topography and geologic features, expansive views, drainage corridors, intact vegetative communities, and cultural sites. The plan also preserves the arroyo landscapes for their stormwater management functionality, natural beauty, and educational value. Native prairie is preserved in key locations. Development in native prairie areas integrates native landscapes, weaving these features through building clusters to the greatest extent possible. Along with establishing campus character, the open space also preserves views of the bluffs for both UCCS and the greater community, buffers surrounding residential development, and protects the remote retreat experience at the Heller Center. During North Campus development, tightly controlled construction zones will ensure protection of these natural features.

The Master Plan establishes two new open lawns on campus. One creates a gracious entrance to the university along North Nevada Avenue, and the other serves as a central gathering space for the academic village located on the Mesa. Both will offer opportunities for students to throw a Frisbee, read outside on nice days, or attend university-sponsored events. Plazas, like the existing El Pomar Plaza, at key nodes along the pedestrian spine, including its termination at the arena and at shuttle stops, establish additional areas for community interaction. Several smaller courtyards in other areas of development, particularly in conjunction with residence halls, diversify the scale of open spaces available on campus.

Stormwater Management

Across the North Campus, stormwater runoff management mimics natural hydrology processes to the extent practical. The pattern of dense development surrounded by preserved naturalistic open space is conducive to this type of drainage management. Rain gardens for bio-retention and full spectrum detention ponds are the primary management facilities. Use of permable pavement in specific low-traffic areas, porous base materials under athletic fields, grass swales, and grass buffers in specific areas enhances the university's stormwater strategy. As technology advances, new practices may offer additional stormwater management approaches. These strategies all work to reduce the frequency and quantity of runoff discharged from impervious surfaces and improve water quality through filtration and sedimentation. Stormwater best management practices work well with phased development, avoiding the need for significant downstream improvements in early development phases.

Existing Arroyos

With careful implementation of a stormwater management plan that mimics existing hydrology by discharging runoff to the arroyos over erosion resistant surfaces, the three main arroyos will serve as the drainage outfalls for the North Campus area with minimal improvements. More detailed analysis will be necessary and the condition of the arroyos should be monitored for instability as development in the watershed progresses.

The small existing arroyos above the proposed athletics district collect and convey runoff from the very steep and rocky areas along the northern perimeter. The steeper portions of these arroyos exhibit active erosion and will continue to erode and deliver and deposit sediment in the North Campus unless efforts are made to stabilize them. Given the relatively small watersheds contributing to these arroyos, potential treatments include construction of small ponds or level terraces along the watercourses to facilitate infiltration of frequent runoff coupled with construction of relatively flat and wide diversion channels constructed nearly parallel to the existing grade contours to shelter proposed athletic facilities from upstream flow.

Rain Gardens

Rain gardens consist of shallow depressed landscaped areas constructed over thick beds of a mixture of sand and organic material. They improve water quality through filtration and biological processes and reduce runoff volume and flow rates through infiltration, evaporation, evapotranspiration, and controlled discharge. Given the availability of open land, it is recommended that these facilities be sized for events well in excess of the water quality event.

Stormwater is concentrated in shallow depressions and then percolates into the underlying bed material. If the bed is constructed over well-draining soil, it continues to percolate into the sub-grade soil. If the sub-base soils are not adequately permeable, a pipe under-drain system is required to allow the rain garden to drain over time. Large, flat facilities like surface parking and athletic fields, will prove to be the most challenging, particularly on the steep topography. In these areas, pre-treatment, including grass buffers, swales, and sediment-collection forebays to remove coarse sediments as water is routed to the rain gardens is recommended.

Permeable paving can be successfully installed in low-traffic areas including parking stalls and plazas.

Landscape areas can be specifically designed to retain stormwater.

Detention Ponds

Detention ponds discharging to the arroyos treat water quality and control runoff from afternoon showers as well as 100-year flood events in accordance with the criteria for "full spectrum detention ponds" developed by the Urban Drainage and Flood Control District.

A non-detailed approximate hydrologic analysis revealed:

- In its existing condition, the southern outfall, located approximately 400 feet north of Austin Bluffs Parkway, has sufficient capacity to accept 100-year peak runoff from future development in the watershed. This is contingent upon maintaining the existing informal detention area in the arroyo immediately upstream of the outfall. The stormwater facilities identified to mitigate new development in this watershed should result in peak flows that are equal to or less than existing flows.
- The middle outfall, located approximately 1,200 feet north of Austin Bluffs Parkway, has considerably less capacity than needed, even to accommodate existing runoff. Preliminary discussions with City of Colorado engineering staff indicated that future peak discharge rates from the site should not exceed the existing limits planned for this outfall. If left unmitigated, North Campus developments will increase peak runoff rates from the site; however, planned stormwater management facilities will result in post-development peak runoff rates that are less than existing condition peak flow rates. Further discussions with City of Colorado Springs engineering staff are recommended as development progresses.
- The northern outfall, located approximately 3,200 feet north of Austin Bluffs Parkway, has sufficient capacity in its existing condition to accept 100-year peak runoff from future development in the watershed. In addition to the informal detention area that exists immediately upstream of the outfall, the additional facilities identified to control discharge to the arroyo from North Campus development should result in peak flows that are equal to or less than in the existing condition.

Storm Sewers, Culverts, and Bridges

Where practical, the plan uses open swales and arroyos to convey runoff through the campus. However, storm sewers, culverts, or bridges are needed in more complex conditions, such as transit and pedestrian spine crossings. Overland emergency flow paths will be preserved in case of storm sewer failure.

Theses structures should be designed in keeping with the campus character. Box culverts provide the most economical structures for arroyo crossings, but will be outfitted with wing walls, headwalls, and railings reflective of campus architectural character to feel more like a bridge and integrate them into the campus fabric.

Underground Stormwater Treatment Facilities

Due to the large size of the arena and Visual and Performing Arts Center and their locations along North Nevada Avenue, there is not adequate room downstream to employ above-ground stormwater management facilities to treat the quantity of runoff these large impervious areas will generate. Given these constraints, a combination of underground treatment, including separators, filters, and underground extended detention will be required.

Utilities

To support the Master Plan, utility needs were assessed at a planning scale based on current projections of future building use and size. As these projects progress into design phases, further analysis will be needed in accordance with the requirements provided by Colorado Springs Utilities.

Sanitary Sewer

Sanitary sewer capacity is limited on the East Campus by low capacity through downstream facilities, particularly when considering intensive uses such as residence halls. Preliminary analysis suggests the university will be able to accommodate a 900 bed residential village and significant academic growth on the East Campus by constructing new 8-inch lines through the proposed East Campus academic district and connecting them into existing public lines southeast of campus (North Union Boulevard at Cragwood Drive).

To accommodate projected North Campus development, an 8-inch sanitary sewer collector will run underneath the pedestrian spine. Isolated segments of this collector will require 10-inch pipes. New Core Campus facilities could take advantage of North Campus sanitary sewer capacity and avoid necessitating downstream improvements by connecting back to the collector. Small segments of existing infrastructure that connect this new collector to North Nevada Avenue will need to be upgraded to 10- and 12-inch mains to accommodate the new flow created upstream.

To serve the new athletics venues at the north end of the campus, 12-inch lines running underneath North Campus Heights Road will be needed.

Water

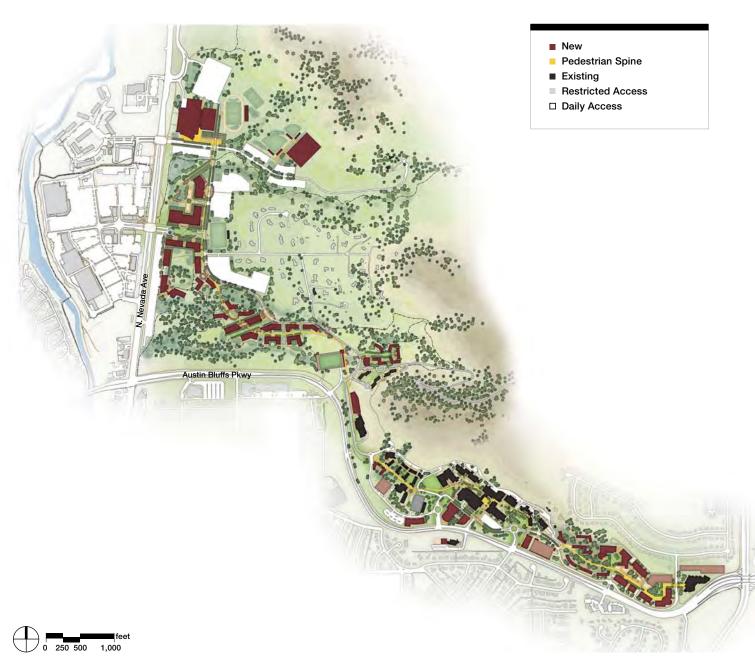
Water service must meet building system flow needs or the fire flow needs, whichever is greater. Water system demands for each building are determined based upon the gross square footage and building usage. Chapter 6 of the International Building Code regulates fire flows based upon a building's gross square footage and building construction type. The water analysis supporting the Master Plan reduces required fire flow by 50 percent under the assumption that all buildings will be equipped with an approved automatic sprinkler system. Despite this reduction, projections indicate that fire flow requirements will exceed building system demands and dictate pipe size selection. Hydraulic analysis and water availability studies during design will determine necessary improvements.

Planned development on the East Campus requires two 12-inch loops: one serving the residential village and one serving the academic district. To support new academic facilities in the Core Campus a new 12-inch loop connects at Meadow Lane and at Austin Bluffs Parkway.

A 10-inch loop connecting to existing Alpine Village water service will facilitate expansion of this residential village. To serve new university development in the Mesa area, Health and Wellness Village, Visual and Performing Arts Center, and Athletics Districts of the North Campus, a 14-inch water line will run underneath the pedestrian spine. The existing 8-inch line connecting this area to North Nevada Avenue will need to be upgraded to a 12-inch line as well. To accommodate the significant fire flow demands of the arena, natatorium, and field house, existing water mains along North Campus Heights Road will need to be upgraded to 16 inches between North Nevada Avenue and the spine and 14 inches east of the spine.

Gas and Electric

Gas and electric service to new buildings in the Core, North, and East Campuses will continue to be metered separately using utility-owned transformers. In order for public gas and electric utilities to serve the development of the North Campus, a one to one and a half mile long utility corridor easement through campus is necessary. To facilitate Colorado Springs Utilities (CSU) maintenance, the easement is located along the roadside, but not under the roadway, with separate manholes for power and telecommunication installed at least every 500 feet.


Gas, electric, and telecommunications will all be routed in this corridor. CSU standards require that electrical service be accommodated in a concrete-encased duct bank. While not required, encasing telecommunication conduit in concrete as well will extend its life and reduce maintenance needs. Electrical and telecommunication lines can be encased together or separately.

CSU offers incentives to reduce electric load during peak demand hours. By installing submeters for high load applications including lighting, heating, ventilation, and air conditioning (HVAC), and computer labs, the university can take advantage of reduced electrical rates during off-peak times. CSU also offers incentive programs for renewable energy generation. Individual building projects will include cost benefit analysis to determine if renewable energy's payback period will be short enough to pursue.

Phasing plans and funding constraints for a central steam plant to supply campus heating, ventilation, and air conditioning (HVAC) make the infrastructure cost prohibitive. As a result, the university will continue to operate individual HVAC units for each building.

Features of the Master Plan

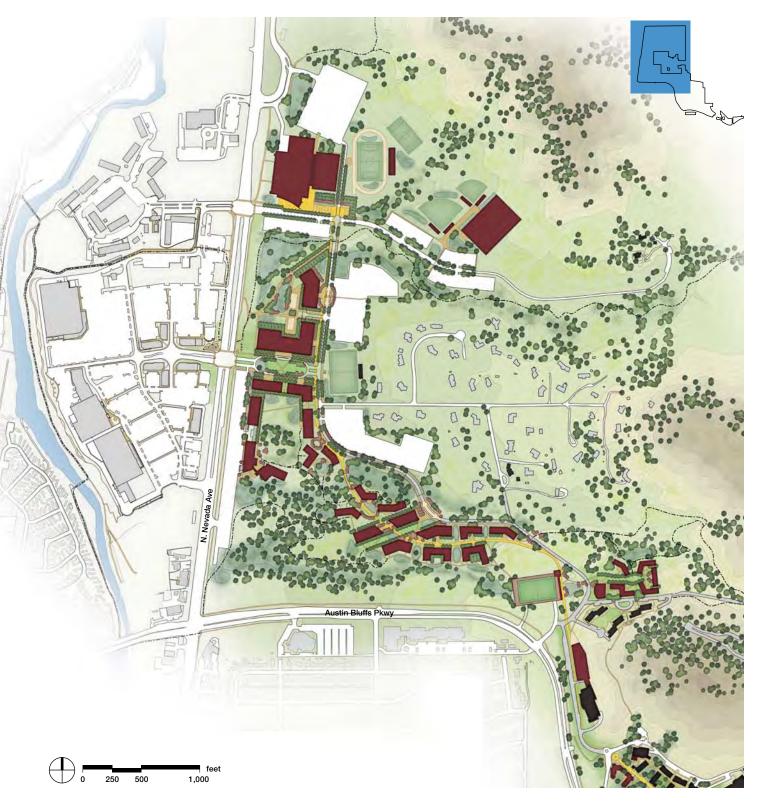
The Master Plan calls for new facilities, landscapes, and infrastructure across the campus with significant concentrations of new development on the East and North Campuses. While each development reflects the unique character, challenges, and opportunities of its individual site, the Master Plan in its entirety reflects a cohesive, unified campus.

CORE CAMPUS

Today, the Core Campus consists of a mix of academic, administrative, athletic, and residential facilities within easy walking distance and linked by a pedestrian spine. As athletic and visual and performing arts facilities are relocated to the North Campus, the living-learning environment is preserved and enhanced through the addition of new facilities on the few available building sites in the core.

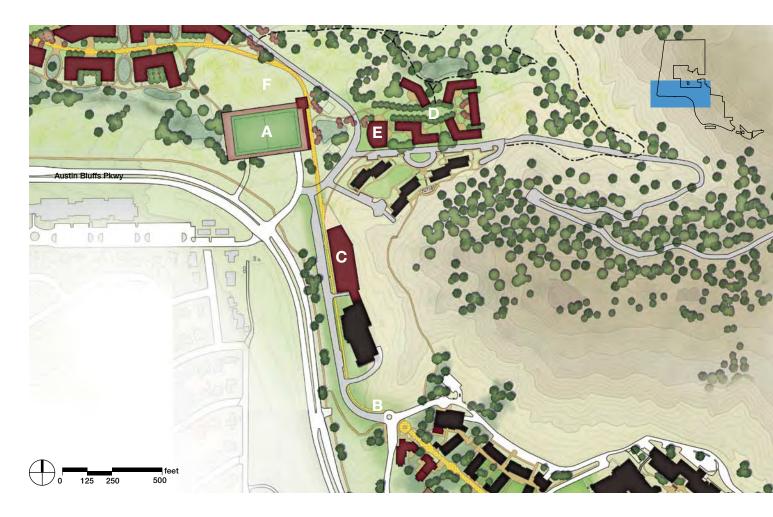
- **A.** As it negotiates the existing Core Campus surface parking lots, Regent Circle is clarified into an internal campus street with a defined shuttle stop. Clarified circulation improves shuttle efficiency and increases safety for pedestrians and cyclists.
- **B.** Two new residence halls with 192 beds and an expansion of the Lodge complete the build-out of Summit Village.
- **C.** A new building along Austin Bluffs Parkway provides additional faculty office and administrative space.
- **D.** After relocating to the North Campus, Athletics vacates the Gallogly Events Center, freeing additional student union and conferencing space.
- **E.** Expansion of the Child and Family Development Center provides for its continued growth.

- **F.** Long-term sites for two parking garages serve the Core Campus by providing a parking resource at either edge, while freeing existing surface parking lots for development.
- **G.** Existing surface parking lots provide additional academic development capacity when structured parking facilities are financially feasible. Building height on these sites is limited to three stories to preserve views of the Front Range from existing buildings, and building massing defines a gateway to the university campus by preserving views of the Engineering and Applied Sciences Building.
- **H.** A new academic or administrative building at the Meadow Lane entrance to the university defines the edge of Cragmor Green by continuing the sweeping arc established by Main Hall.



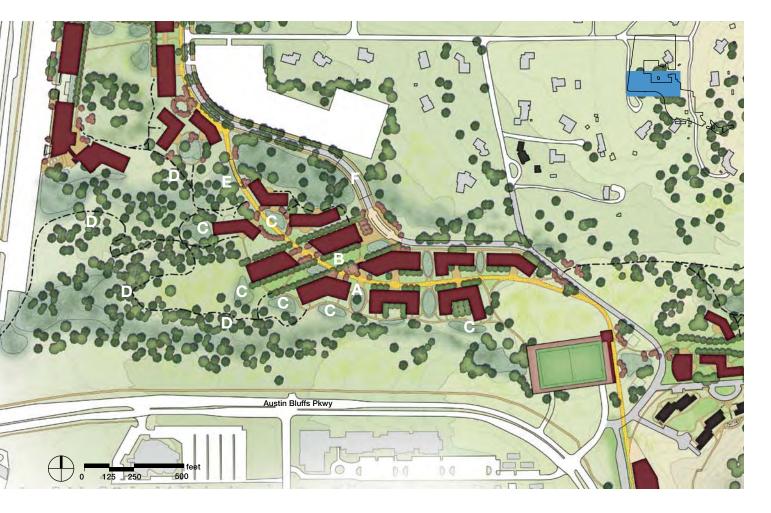
EAST CAMPUS

While University Hall feels disconnected from the center of campus today, a new residential village and academic district will connect University Hall to the campus through an extension of a living-learning environment similar to the Core Campus. An extension of the pedestrian spine holds the district together by linking a series of interconnected open spaces that will contribute to a vibrant public realm.


- **A.** This heavily wooded site accommodates 900 additional beds of student housing through environmentally sustainable design. Its close proximity to the majority of the university's academic facilities make it an optimal location for lower division, suitestyle housing.
- **B.** A dining facility located prominently along the spine in the center of the East Campus precinct offers students the opportunity to gather for a meal in a location where they can "see and be seen." Its proximity to both residential and academic facilities make it a vibrant place at breakfast, lunch, and dinner.
- **C.** A cluster of new academic and administrative facilities offer over half a million gross square feet of capacity to support the growth of the university.

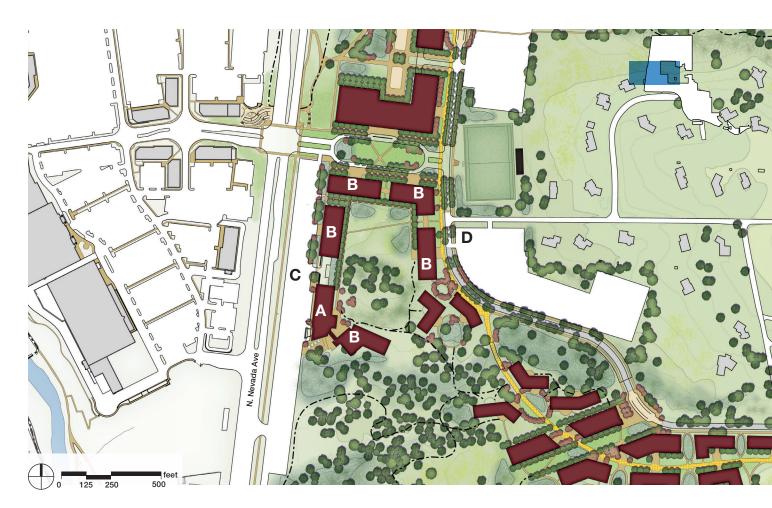
- **D.** The pedestrian spine extends east along a relatively flat path through the residential village and academic district. It ends in a grand stair that negotiates the terrain between the upper terrace and a lower University Hall.
- **E.** Structured parking facilities at the eastern edge of campus serve daily users of East Campus facilities.

NORTH CAMPUS


The North Campus accommodates much of the anticipated development to facilitate university growth. Development is clustered along the pedestrian spine in the most buildable areas of the site. Public facilities for athletics, visual and performing arts, and academic health sciences create a public face to the university that draws the campus and Colorado Springs communities together, complements the commercial development at University Village Colorado, and influences the type of development along the rest of the North Nevada Corridor.

ALPINE VILLAGE

- A. A new structured parking facility sits in the depression at the top of the southernmost arroyo, which has experienced significant erosion. The garage has easy access off Austin Bluffs Parkway and serves the Recreation Center, housing in Alpine Village, and development on the mesa. Due to its proximity to the Recreation Center and its large potential footprint, this garage is an ideal opportunity to consider a turf field on the top level. The field is accessed at grade from Stanton Road.
- **B.** Daily traffic is prevented from traveling past the Student Recreation Center and new structured parking facility.
- **C.** Structured parking at (A) frees the surface parking lot north of the Student Recreation Center for a building addition. By expanding in place to create one large, central facility, operations are more efficient.


- D. Structured parking at (A) allows the Alpine Village surface parking lot to accommodate an additional 625 suite-style beds, completing a 925-bed village. The potential mix of units in this village presents an opportunity for a themed village, such as an honors college or sustainability village that brings together lower and upper division students.
- **E.** A dining hall serving Alpine Village sits in a prominent location along the pedestrian spine, overlooking recreation fields and courts, the Front Range and the Austin Bluffs.
- **F.** The archaeological mound is preserved. Signage along the pedestrian spine educates the campus community about the site's history and ongoing academic investigations.

MESA

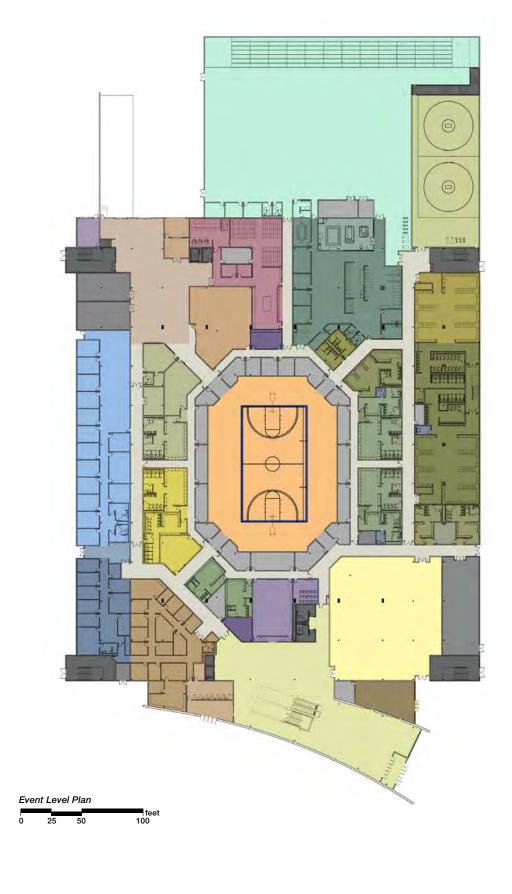
- **A.** An academic village mixing residence halls, research facilities and academic buildings provides a livinglearning environment.
- **B.** A central quad framing views of Pikes Peak provides an open outdoor gathering space for passive recreation.
- **C.** Stormwater management facilities and native landscape planting offer opportunities to educate the campus community about the site's unique landscape and hydrologic processes.

- **D.** The trail system allows the campus community to engage with the landscape.
- **E.** A pedestrian bridge, much like those in Summit Village, carries bicyclists and pedestrians across the arroyo.
- **F.** The transit spine crosses the arroyo over a bridge designed to complement the site's native landscape.

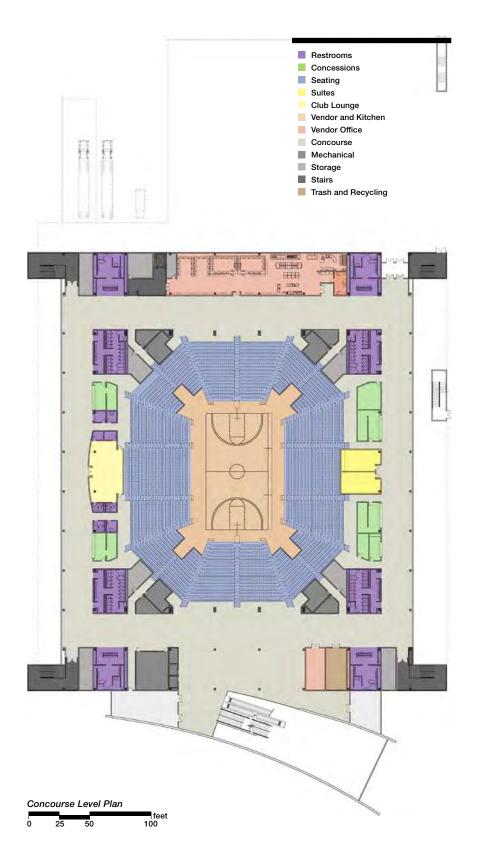
HEALTH AND WELLNESS VILLAGE

- **A.** The Lane Center, a partnership between Peak Vista Community Health Centers, the Gerentology Center, Trauma, Health, and Hazard Center, and Psychology Clinical Research, is an approximately 54,000 GSF building that houses clinic, research, and office space. It is envisioned as the first phase that will catalyze the Health and Wellness Village.
- **B.** Additional academic health sciences facilities line the edge of North Nevada Avenue, the central green, and the spine, creating a shared internal courtyard. Potential uses in this area include the nursing school and additional research, office, or clinical space.
- **C.** The existing surface parking lot along North Nevada Avenue provides easy access to the Lane Center and future Health and Wellness Village buildings.
- **D.** A large surface parking resource to the northeast of the transit spine serves the academic village on the mesa and the health and wellness facilities. The lot is accessed off the transit spine. South of the parking lot access, the spine is restricted to campus shuttles, bicycles, and pedestrians.

VISUAL AND PERFORMING ARTS CENTER


- **A.** The Visual and Performing Arts Center accommodates performance venues, practice rooms, classrooms, offices, studio, and gallery space. The facility is either split into two buildings to separate the visual and performing arts or combined as one.
- **B.** The central green, on axis with the existing soccer field, creates a campus gateway along North Nevada Avenue.
- **C.** A series of sculpture gardens, stormwater management facilities, and outdoor ceramics yards line the path from the North Nevada underpass to the arena.
- **D.** The spine is open to daily traffic through this district of public facilities. A shuttle stop across from the Visual and Performing Arts Center provides easy access to the performance groups and the surface parking resource east of the transit spine.

ATHLETICS


- **A.** A 4,000-seat arena hosts public events including UCCS athletics, US Olympic Committee events, and concerts. Its location along North Nevada Avenue offers easy access and makes it a landmark at the entry to the UCCS campus.
- **B.** The Master Plan allocates a site to accommodate the long-term potential of a natatorium. Its adjacency to the arena allows for shared facilities between the venues, including parking.
- C. A surface parking resource that is easily accessed off of North Nevada Avenue serves the athletics complex during events and helps meet daily university demand.
- **D.** An outdoor stadium hosting track and field and soccer events could be used by community organizations and the US Olympic Committee as well.

- **E.** An additional athletic field provides flexibility for scheduling practice and ensures competition fields are not overused.
- **F.** One softball and one baseball field are relocated from the Four Diamonds Complex to provide a shared facility for athletic competition and practice as well as intramural use.
- G. The Master Plan allocates a site to accommodate the long-term potential of an indoor sports field house. In the short term, the site can accommodate an additional practice field.

Athletic Administration Coaches' Offices Auditorium and Ticket Rooms Ticketing Lobby Arena Administration Womens' Indoor Team Lockers Womens' Outdoor Team Lockers Mens' Indoor Team Lockers Mens' Outdoor Team Lockers ■ Visiting Team Lockers Weight Room Sports Medicine Wrestling Practice ROTC Court Broadcast Press Room Loading Dock and Receiving Equipment and Laundry Stairs

Trash and RecyclingStorageMechanical

ARENA

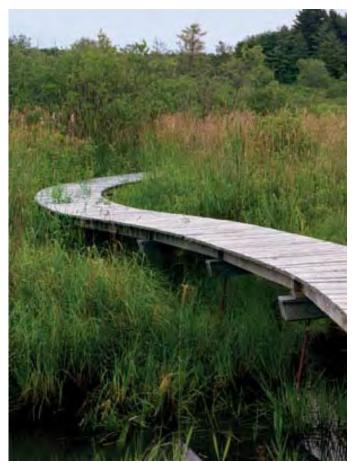
The arena is the anchor of North Campus development, contributing to a vibrant campus and a prosperous city economy. It provides a 4,000-seat venue for university athletics as well as entertainment events. No other facility of this size exists in Colorado Springs, allowing it to fill a niche in the market. Visitors arriving from the south will enter a grand atrium from North Campus Heights Road and travel upstairs to the concourse level, where they will have the opportunity to visit concessions stands before heading to their seat in the bowl. Visitors entering from the north and using the northernmost parking lot will enter at the concourse level.

In addition to functioning as an event venue, the facility will accommodate all athletics and ROTC programs on the ground level. This includes locker rooms, coaches' offices, classrooms and meeting rooms, storage, and other support space. The facility will also include an athletic training area, weight room, and wrestling area. Consolidating these facilities allows the programs to share resources, and frees up valuable space in the Core Campus for student use. Programming studies suggest that this will require a 267,000 square foot facility.

Sustainability

Sustainability Commitments

The University of Colorado's guiding principles state that they seek to "be conscientious stewards of the university's human, physical, financial, information, and natural resources." (Regent Policy 1.B: University of Colorado Legal Origins, Guiding Principles, Principles of Ethical Behavior. Approved 02/11/2010; revised 06/24/2010). While the UCCS 2020 Strategic Plan sets a vision for a period of significant growth, it places a high value on growing sustainably. "Dynamic responsible growth," defined as "financially responsible, academically sound, and environmentally sustainable," is a stated value of excellence. Moreover, one of the 12 stated goals for 2020 is to "provide inspired sustainability leadership and education, and direct the responsible, informed application of social, environmental, and economic sustainability measures in all university activities." The Strategic Plan calls out the need to consider the triple bottom line of economic, environmental, and social criteria to minimize the impact of a growing campus.


The Master Plan supports social sustainability by accommodating enrollment growth to continue to allow all Coloradoans access to higher education, by encouraging community engagement through development of public facilities, and by establishing a network of communal indoor and outdoor spaces that allow a diverse body of students, faculty, and staff to interact. By planning for shared facilities and partnership models that offer additional funding opportunities, the Master Plan also supports economic sustainability. Primarily, however, the Master Plan supports the university's environmental sustainability efforts, which are guided by the Climate Action Plan.

Chancellor Shockley-Zalabak was a charter signatory of the American College and University Presidents Climate Commitment in 2007, and UCCS submitted its Climate Action Plan in June 2010. The Strategic Plan affirms that the University will work to meet the goals of its Climate Action Plan, including a 20 percent reduction in greenhouse gas emissions by 2020, through efforts focused on energy efficiency, conservation, and small-scale renewables. The Climate Action Plan lays out a holistic series of environmental sustainability initiatives, encompassing efforts to enact individual behavioral change, reduce waste and energy use in university operations, and implement leading edge technologies. The Master Plan supports these efforts in the areas of smart growth, transportation, high performance buildings, and landscape.

Smart Growth

The university acknowledges that the most sustainable building is the one that they do not have to build. This is true from an economic sustainability perspective as well as an environmental perspective. As the university grows, they plan to reduce their space needs by increasing the utilization of their classrooms. The integration of online teaching models into the curriculum may play a role in this increased utilization as well. Ultimately, these efforts may result in fewer classroom buildings being necessary.

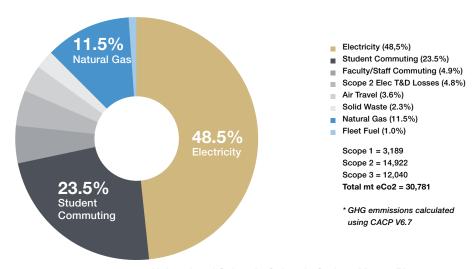
As the analysis in Chapter 4 indicated, these efforts are significant but impact a limited range of facility needs. Enrollment growth will result in the need for new buildings and when new facilities are necessary, disturbed landscapes are identified as priority development sites in order to preserve native, undisturbed landscapes. By clustering facilities together along the pedestrian spine, the disturbance of native landscape is minimized and transportation can function most effectively. Through these efforts, the plan sets aside a significant quantity of native landscape to remain undisturbed in perpetuity.

Preserved landscape is an amenity and educational opportunity.

By clustering new development, large stands of native vegetation can be preserved.

Transportation

According to the 2011 Greenhouse Gas Inventory, 28 percent of the university's greenhouse gas emissions are the result of student and faculty commuting. Despite the university's dispersed population, continued support of alternative transportation offers an opportunity to reduce greenhouse gas emissions. By improving the connection from the bus stops on North Nevada Avenue to the Core Campus and establishing more university uses along the North Nevada edge, the Master Plan increases the convenience of using available bus transportation. If Colorado Springs pursues a streetcar system along North Nevada in the future, the university will be well-positioned to take advantage of it. Increased bicycle lanes and trails connecting to existing bicycle facilities will continue to encourage cycling.


The greatest transportation impact of the Master Plan lies in the potential reduction of vehicle miles travelled between campus destinations. While the Core Campus is very pedestrian-friendly, the North and East Campuses feel remote and difficult to access on foot or by bike, encouraging the campus community to drive there from other parts of campus. As the campus grows, these areas will hold more and more campus activities and demand for travel back and forth will continue to grow. By establishing a transit spine and restricting daily traffic along a significant portion of its route, the university will provide an alternative to driving that is more efficient and results in fewer greenhouse gas emissions. New bicycle facilities hold the same potential impact.

Buildings

The 2011 Greenhouse Gas Inventory highlights that 63 percent of the university's emissions come from the operations of buildings. Increased efficiencies in this area represent a significant opportunity to reduce emissions and improve environmental sustainability, particularly as the campus grows and adds significantly to its building stock. The Climate Action Plan and the UCCS 2020 Sustainability Strategic Plan took a significant step in this regard by specifying that all new buildings meet LEED Gold standards and target 40 percent greater energy efficiency than ASHRAE 90.1 by fiscal year 2020. It emphasizes energy efficiency retrofits in renovations as well.

To achieve and surpass these targets, each project requires holistic consideration. The Master Plan lays the framework as it establishes transit-accessible building sites that avoid disturbing natural resources and support optimal solar orientation. Throughout design processes for individual buildings, reduction in energy demand through increased efficiency and the potential for on-site energy creation will need to be considered. Measures to reduce the demand for water will play a role. Minimizing construction waste contributes as well. Each new building project should continue to push for the highest performance possible, incorporating new technologies as they become available and feasible, in pursuit of the UCCS 2020 Strategic Plan goal of providing "inspired sustainability leadership and education."

GREENHOUSE GAS EMISSIONS (SCOPE 1, 2 & 3)

Landscape

The campus landscape is an opportunity to instill a unique sense of place, achieve environmental sustainability by minimizing water use for irrigation and managing stormwater on site, and offer educational opportunities.

The site's native landscape thrives with little to no irrigation in the Colorado Springs high-plains desert climate. The Plan preserves native plantings and proposes a native palette in developed areas to minimize the university's water use for irrigation in addition to enhancing the landscape's natural beauty.

Moreover, landscape areas will be used to provide critical on-site stormwater management with full spectrum functionality. As additional development has occurred and increased impervious surfaces within the North Campus drainages, the arroyos have experienced significant erosion. As university development expands into the North Campus, increased impervious surface has the potential to exacerbate erosion and contribute more runoff to the city storm sewers. The Master Plan proposes a series of stormwater management landscape interventions to maintain natural hydrology on the North

Campus. They include installation of small rain gardens to filter and clean runoff, larger rain gardens to store runoff for short periods of time, allowing water to recharge back into the aquifer, and detention ponds to store runoff for longer periods of time after storm events. Additionally, it is recommended that the niversity consider the use of pervious materials and pavements for parking lots and walkways to allow water to percolate down in place instead of being added to the overall stormwater flows.

While all of the environmental sustainability initiatives can be used to engage the campus community in an educational manner, campus landscape initiatives provide a compelling opportunity for both formal and informal education. The UCCS 2020 Strategic Plan states that it will "provide exceptional education in sustainability issues and practice, encouraging opportunities for experience in the field." The unique landscapes and geology could provide the basis for formal education and research as part of the UCCS curriculum. Providing educational signage along the recreational trail systems about the native landscape as well as the stormwater management interventions integrates education about the landscape into the everyday routines of the campus community.

Rain gardens integrated into campus landscape at the National Renewable Energy Laboratory.

This page intentionally left blank.

Implementation

2020 PLAN

The Capital Construction Detail of the UCCS 2020 Strategic Plan outlines a series of investments the university plans to make in their campus to achieve the Strategic Plan goals. The plan shows anticipated investments for each academic year, which have been grouped into three phases to illustrate how development will take shape.

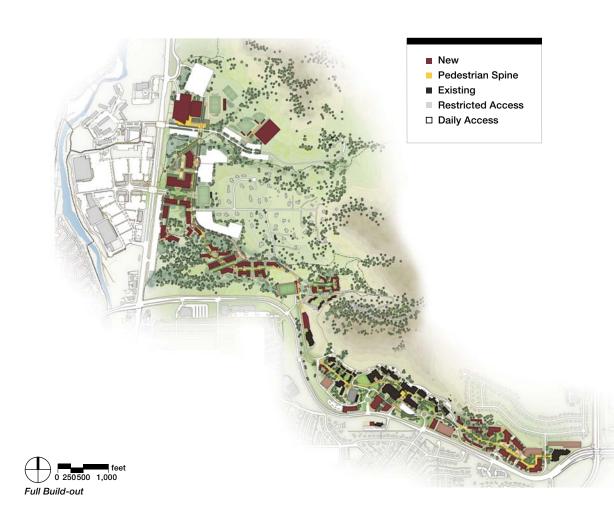
Phase One: 2012-2014

With the Summit Village expansion and the Lane Center in design, Phase One is underway. Before 2014, the university will also pursue a Core Campus building to increase faculty office space. To prepare for additional housing and student recreation development in Alpine Village, the university will expand the parking system with a new garage. In anticipation of significant North Campus development in Phase Two, the university will invest in infrastructure and the relocation of Mountain Lion Field with stadium seating for soccer and track events. Additionally, research facility renovations and purchases of East Campus properties will continue to advance progress on long-term goals.

Phase Two: 2014-2017

Phase Two will enact transformational change on the North Campus with the development of new public venues, including the Visual and Performing Arts Center and Sports Arena. As campus activity shifts north, more investments will be made in North Campus infrastructure and recreation fields, and the transit spine will be constructed to facilitate easy access to this redeveloped district. The university will continue to increase its on-campus housing capacity by completing Alpine Village with several new residence halls and a building addition to the Student Recreation Center.

As the university completes its East Campus property acquisition in this phase, development will begin on the East Campus with the construction of South Hall, a new academic facility located adjacent to University Hall. The Core Campus will continue to grow as well with an expansion of the Family Development Center, and continued investment in research facilities.


Phase Three: 2017-2020

In the final phase of the 2020 Plan, the Health and Wellness Village will expand with the construction of the Phase II Wellness Center. A new baseball field and associated support facility will be added to the North Campus. During this phase, the university will undertake a significant Engineering and Applied Science Renovation and complete its planned research facility renovations.

FULL BUILD OUT

As enrollment continues to grow in the years beyond 2020, the Master Plan allocates capacity for facilities that would accommodate 20,000 to 23,000 students on campus. Sites will be available on the East Campus and Core Campus to accommodate academic growth in support of the university's mission, particularly when additional parking structures are constructed. To continue housing 16 percent of its students on campus, new residence halls will be needed. The Master Plan shows a new housing village on the East Campus. The Academic Village planned for the Mesa has been programmed with flexibility to allow for additional housing or academic capacity depending on the university evolution and partnership opportunities. Finally, the Athletics District can support additional programs through new facilities, and several additional sites have been allocated for the build out of the Health and Wellness Village.

This page intentionally left blank.

Acknowledgements

MASTER PLAN COMMITTEE

The university would like to thank the members of the Master Plan Committee for shaping future campus development through their ideas and guidance throughout the planning process.

Meetings

July 13, 2011 September 8, 2011 October 12, 2011 October 14, 2011 February 9, 2012

Members

Doug Anderson

Colorado Springs Utilities

Andy Burkart

IT Department, UCCS

Minette Church

Associate Professor of Anthropology, UCCS

Brian Colvert

UBS

Tom Cone

University Village Colorado/Kratt Commercial Properties

Bob Cope

Economic Development, City of Colorado Springs

Tom Christensen

Dean, Letters, Arts, and Sciences College, UCCS

Ramaswami Dandapani

Dean, School of Engineering and Applied Sciences, UCCS

Hector Flores

Student Council Vice President, UCCS

Carolyn Fox

University Architect, UCCS

Ralph Giese,

Director Residence Life and Housing, UCCS

Jarod Gray

Student Council President, UCCS

Linda Kogan

Sustainability Director, UCCS

Kevin Kratt

University Village Colorado/Kratt Commercial Properties

David Krauth

City Traffic Engineer, City of Colorado Springs

Liz Lancaster

Cragmor Neighborhood

Mike Maloney

Colorado Springs School District 11

Robyn Marschke

Director of Institutional Research, UCCS

Jessica McMullen

Colorado Springs Chamber of Commerce

John Olson

Vice-Chair, Colorado Springs Urban Renewal Authority

James Rees

Colorado Springs Urban Renewal Authority

Gary Reynolds

Executive Director of Facilities Services, UCCS

Carl Schueler

Senior Planner, City of Colorado Springs

Ralph Seaman

Eagle Rock Neighborhood

Matt Sidor

Student Government Association, UCCS

Val Snider

Colorado Springs City Council

Jim Spice

Public Safety Director, UCCS

Gregory Stock

Associate Professor, College of Business, UCCS

Teri Switzer

Dean, Kraemer Family Library, UCCS

Jerry Seracuse

Design Review Board, University of Colorado

Susan Szpryka

Vice Chancellor for Administration and Finance, UCS

Ron Toman

Eagle Rock Neighborhood

Steve Tuck

Senior Planner, City of Colorado Springs

Homer Wesley

Vice Chancellor for Student Success, UCCS

Sabrina Wienholtz

Program Assistant, UCCS

David White

Executive Vice President, Colorado Springs Regional Economic

Development Corporation

FOCUS GROUPS

Students, faculty, staff, university leadership, neighbors, and city officials participated in a range of focus groups convened around the following topics. Their input offered unique insight into UCCS culture and is sincerely appreciated.

Provost, July 13, 2011

Chancellor, July 13, 2011

Academic Affairs and Advancement, July 13, 2011

Local Business, July 13, 2011

Neighborhood Relations, July 13, 2011

Student Success, July 14, 2011

City Planning Considerations, July 14, 2011

Parking and Transportation, September 7, 2011

Housing, September 7, 2011

Student Government, September 8, 2011

Faculty Assembly, September 8, 2011

Student Recreation Facilities, September 8, 2011

Graduate Students, September 8, 2011

Sustainability, September 21, 2011

Research, September 22, 2011

Food Service, October 13, 2011

Cultural Resources, November 9, 2011

PUBLIC FORUM SESSIONS

Master Plan progress meetings generated extensive discussion about the campus' future. The university thanks students, neighbors, faculty, staff, city officials, and members of the business community for their enthusiastic participation in sessions held on the dates listed below.

September 8, 2011

October 12, 2011

October 13, 2011 (two separate meeting sessions)

November 9, 2011 (Open House)

November 10, 2011 (Open House)

February 9, 2012

DESIGN REVIEW BOARD

The university is grateful for the Design Review Board's collaboration and guidance as they shepherded the development of the Master Plan.

Members	Meetings
Lois Drake	July 14, 2011
Victor Olgyay	September 9, 2011
Teresa Osborne	January 12, 2012
John Prosser	February 10, 2012
Candy Roberts	
Jerry Seracuse	

CONSULTANT TEAM

Master Planning

Ayers Saint Gross Architects + Planners 1040 Hull Street, Suite 100 Baltimore, MD 21231 www.asg-architects.com

Landscape Architecture

Tapis Associates 540 Buckeye, Terrace Level Colorado Springs, CO 80919 www.tapisassociates.com

Civil Engineering

Wilson and Company 5755 Mark Dabling Boulevard, Suite 220 Colorado Springs, CO 80919 www.wilsonco.com

Sports Architecture

HNTB Architects 7115 Kirk Drive Kansas City, MO 64105 www.hntb.com

Appendix A

Space Needs Projections

30 Hours Per Week Classroom Utilization, 7% of Credit Hours Online

	Student Enrollment Projections										
Year	Fall 2011	2020									
Number of Students	9,321	13,000	15,000	20,000	25,000						
Students Living On-Campus	900	2,400	2,700	3,600	4,500						
Percent Living On-Campus	9.7%	18.5%	18.0%	18.0%	18.0%						
Fall Credit Hours	113,285	157,374	181,592	242,123	302,654						
Online Credit Hours	7,876	10,941	12,625	16,833	21,042						
Hours: Percent Online	7.0%	7.0%	7.0%	7.0%	7.0%						
Fall Student FTEs	7,552	10,492	12,106	16,142	20,177						
Online FTEs	525	732	845	1,127	1,408						
FTE: Percent Online	7.0%	7.0%	7.0%	7.0%	7.0%						
Number of Faculty	672	934	1,077	1,436	1,795						
Student-Faculty Ratio	13.9	13.9	13.9	13.9	13.9						
Faculty FTEs	471	654	754	1,006	1,257						
Student FTE-Faculty FTE Ratio	16.0	16.0	16.1	16.1	16.1						
Blended Faculty Headcount/FTE ^C	572	794	916	1,221	1,526						
Number of Staff ^C	487	679	783	1,045	1,306						

Space Needs Projections											
Year 20				20	20						
Enrollment		9,321		13,0	000	15,0	000	20,	000	25,	000
Academic ASF	Existing	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta
Total Classroom Space ^A Classroom RT-11 Teaching Labs RT-12	125,792 57,895 67,896	105,409	0	,	21,222	169,631	43,840	226,175	225,281	282,719	156,928
Open Labs RT-14	33,676	26,001	0	36,263	0	41,971	8,294	55,961	55,740	69,952	36,275
Research Labs RT-21 ^B	41,468	37,680	0	71,453	29,985	128,249	86,781	181,380	181,380	362,760	321,293
Academic Offices RT-17 ^C	82,295	97,155	14,860	134,966	52,671	155,730	73,436	207,641	207,641	259,551	177,256
Other Academic Dept RT-15/16	7,996	7,996	0	11,152	3,156	12,868	4,872	17,157	17,089	21,446	13,450
Library RC-40	98,032	106,596	8,564	136,726	38,694	157,760	59,728	210,347	209,515	262,934	164,901
Admin Offices RT-51 ^D	55,774	74,511	18,737	103,921	48,147	119,908	64,134	159,878	118,019	199,847	144,073
Assembly & Exhibit, Gallery & Theatreworks ^E	20,751	37,764	17,013	55,649	34,898	65,372	44,622	89,680	89,295	113,987	93,237
Other Admin Dept Space RT-52	35,614	35,614	0	49,670	14,056	57,312	21,698	76,416	76,114	95,520	59,906
Physical Plant RC-55 ^F	12,396	37,992	25,596	52,987	40,591	61,139	48,743	81,518	81,196	101,898	89,502
Academic Total ASF	513,793	566,718	52,925	799,801	286,008	969,941	456,148	1,306,153	1,261,270	1,770,614	1,256,821
Academic Total GSF	1,116,941	1,231,995	115,053	1,593,622	476,681	1,877,187	760,246	2,437,541	2,249,482	3,211,642	2,094,701
Student Life ASF	Existing	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta
Athletics-Dept of Athletics ^G	26.396	95,523	69,128	125,332	98,936	42,310	141,537	182,050	294,762	222,562	196,167
Physical Education & Recreation ^H	42,808	107,842	65,033	128,258	85,450		147,990	179,200	241,920	224,000	181,192
Student Union ^I	62,592	75,523	12,932	105,332	42,740	100,329	121,537	162,050	161,409	202,562	139,971
Student Life Total ASF	131,796	278,888	147,092	358,923	227,127	211,256	411,065	523,300	698,091	649,125	517,329
Student Life Total GSF	286,513	606,279	319,766	665,058	378,545	406,907	751,961	939,019	1,144,536	1,148,727	862,215
Housing ASF	Existing	ldeal	Delta	Target	Delta	Target	Delta	Target	Delta	Target	Delta
Student Housing Total ASF	180,442	319,327	138,885	532,942	352,500	603,442	423,000	814,942	634,500	1,026,442	846,000
Student Housing Total GSF	378,841	610,316	231,475	966,341	587,500	1,083,841	705,000	1,436,341	1,057,500	1,788,841	1,410,000
Total	Existing	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta
ASF	826,031	1,164,933	338,902	1,691,666	865,635	1,784,639	958,608	2,644,395	1,818,364	3,446,180	2,620,149
GSF ^J	1,782,295	2,448,589	666,294	3,225,021	1,442,726	3,367,936	1,585,641	4,812,901	3,030,606	6,149,211	4,366,916

Notes

- A. ASF per weekly student contact hour (WSCH) = (20 ASF/station)/(30 weekly room hours x 67% station occupancy) = 1.00 ASF/WSCH; Fall In-person Credit Hours used as proxy for WSCH
- B. 40 ASF/Faculty FTE is standard for comprehensive institution; 250 for research institution; gradually steps from 80 to 180; (average of faculty and faculty FTE)
- C. 170 ASF/Faculty FTE is standard; Because of high ratio of Faculty Headcount to Faculty FTE, used 170 ASF/Faculty Estimate (average of Faculty Headcount and Faculty FTE)
- D. 170 ASF/staff requiring an office. Assumed 90% require an office.
- E. 22,450 ASF core allowance plus 6 ASF/student FTE above 5,000

- F. 6% of total campus ASF excluding residence life space and existing physical plant; existing includes plant building only.
- G. 50,000 base + 10ASF per FTE for FTE over 3000; arena at 15,000; fieldhouse at 20,000; natatorium at 25,000.
- H. NIRSA ASF guidelines per student headcount: 11,524/1,000 (under 9,999 students); 9,866/1,000 (10,000 - 19,999 students); and 8960/1,000 (over 20,000 students).
- I. 9-10 ASF/student FTE is standard; 10 ASF/FTE used due to high commuter rate
- J. Projected ASF:GSF ratio is 0.6

40 Hours Per Week Classroom Utilization, 7% of Credit Hours Online

Projections impacted by higher classroom utilization

	Space Needs Projections										
Year		2011		20	20						
Enrollment		9,321		13,0	000	15,000		20,000		25,000	
Academic ASF	Existing	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta
Total Classroom Space ^A Classroom RT-11 Teaching Labs RT-12	125,792 57,895 67,896	105,409	0	109,825	0	126,721	929	168,961	225,281	211,201	85,409
Open Labs RT-14	33,676	26,001	0	36,120	0	41,971	8,294	55,961	55,740	69,952	36,275
Research Labs RT-21 ^B	41,468	37,680	0	71,453	29,985	128,249	86,781	181,380	181,380	362,760	321,293
Academic Offices RT-17 ^C	82,295	97,155	14,860	134,966	52,671	155,730	73,436	207,641	207,641	259,551	177,256
Other Academic Dept RT-15/16 Library RC-40	7,996 98,032	7,996 106,596	0 8,564	11,108 136,185	3,112 38,153	12,868 157,760	4,872 59,728	17,157 210,347	17,089 209,515	21,446 262,934	13,450 164,901
Admin Offices RT-51 ^D	55,774	74,511	18,737	103,510	47,736	119,908	64,134	159,878	118,019	199,847	144,073
Assembly & Exhibit, Gallery & Theatreworks ^E Other Admin Dept Space RT-52	20,751 35,614	37,764 35,614	17,013 0	55,400 49,474	34,649 13,860	65,372 57,312	44,622 21,698	89,680 76,416	89,295 76,114	113,987 95,520	93,237 59,906
Physical Plant RC-55 ^F	12,396	37,992	25,596	52,777	40,381	61,139	48,743	81,518	81,196	101,898	89,502
Academic Total ASF	513,793	566,718	52,925	760,818	247,025	927,029	413,237	1,248,939	1,261,270	1,699,095	1,185,302
Academic Total GSF	1,116,941	1,231,995	115,053	1,457,792	340,851	1,802,217	685,276	2,337,581	2,249,482	3,086,692	1,969,751
Student Life ASF	Existing	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta
Athletics-Dept of Athletics ^G	26,396	95,523	69,128	124,916	98,520	42,310	141,537	182,050	294,762	222,562	196,167
Physical Education & Recreation ^H	42,808	107,842	65,033	128,258	85,450	68,618	147,990	179,200	241,920	224,000	181,192
Student Union ^I	62,592	75,523	12,932	104,916	42,324	100,329	121,537	162,050	161,409	202,562	139,971
Student Life Total ASF	131,796	278,888	147,092	358,090	226,294	211,256	411,065	523,300	698,091	649,125	517,329
Student Life Total GSF	286,513	606,279	319,766	663,699	377,186	406,907	751,961	939,019	1,144,536	1,148,727	862,215
Housing ASF	Existing	Ideal	Delta	Target	Delta	Target	Delta	Target	Delta	Target	Delta
Student Housing Total ASF	180,442	319,327	138,885	532,942	352,500	603,442	423,000	814,942	634,500	1,026,442	846,000
Student Housing Total GSF	378,841	610,316	231,475	966,341	587,500	1,083,841	705,000	1,436,341	1,057,500	1,788,841	1,410,000
Total	Existing	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta
ASF	826,031	1,164,933	338,902	1,651,850	825,819	1,741,728	915,697	2,587,180	1,761,150	3,374,662	2,548,631
GSF ^J	1,782,295	2,448,589	666,294	3,087,832	1,305,537	3,292,965	1,510,670	4,712,941	2,930,646	6,024,260	4,241,965

Notes

- A. ASF per weekly student contact hour (WSCH) = (20 ASF/station)/(40 weekly room hours x 67%station occupancy) = .75 ASF/WSCH; Fall In-person Credit Hours used as proxy for WSCH
- B. 40 ASF/Faculty FTE is standard for comprehensive institution; 250 for research institution; gradually steps from 80 to 180; (average of faculty and faculty FTE)
- C. 170 ASF/Faculty FTE is standard; Because of high ratio of Faculty Headcount to Faculty FTE, used 170 ASF/Faculty Estimate (average of Faculty Headcount and Faculty FTE)
- $\textbf{D.}\ 170\ \text{ASF/staff}$ requiring an office. Assumed 90% require an office.

- E. 22,450 ASF core allowance plus 6 ASF/student FTE above 5,000
- F. 6% of total campus ASF excluding residence life space and existing physical plant; existing includes plant building only
- G. 50,000 base + 10ASF per FTE for FTE over 3000; arena at 15,000; fieldhouse at 20,000; natatorium at 25,000
- H. NIRSA ASF guidelines per student headcount: 11,524/1,000 (under 9,999 students); 9,866/1,000 (10,000 - 19,999 students); and 8960/1,000 (over 20,000 students)
- I. 9-10 ASF/student FTE is standard; 10 ASF/FTE used due to high commuter rate
- J. Projected ASF:GSF ratio is 0.6

30 Hours Per Week Classroom Utilization, 15% of Credit Hours Online

Projections inpacted by 15% of credit hours online

	Student Enrollment Projections										
Year	Fall 2011	2020									
Number of Students	9,358	13,000	15,000	20,000	25,000						
Students Living On-Campus	900	2,400	2,700	3,600	4,500						
Percent Living On-Campus	9.6%	18.5%	18.0%	18.0%	18.0%						
Fall Credit Hours	108,597	157,374	181,592	242,123	302,654						
Online Credit Hours	6,101	23,606	27,238	36,317	45,396						
Hours: Percent Online	5.6%	15.0%	15.0%	15.0%	15.0%						
Fall Student FTEs	7,240	10,492	12,106	16,142	20,177						
Online FTEs	407	1,574	1,816	2,421	3,026						
FTE: Percent Online	5.6%	15.0%	15.0%	15.0%	15.0%						
Number of Faculty	672	934	1,077	1,436	1,795						
Student-Faculty Ratio	13.9	13.9	13.9	13.9	13.9						
Faculty FTEs	471	654	754	1,006	1,257						
Student FTE-Faculty FTE Ratio	15.4	16.0	16.1	16.1	16.1						
Blended Faculty Headcount/FTE ^C	572	733	916	1,221	1,526						
Number of Staff	487	627	723	965	1,206						

	Space Needs Projections										
Year		2011		20	15	2020					
Enrollment		9,321		12,	000	15,000		20,000		25,000	
Academic ASF	Existing	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta
Total Classroom Space ^A Classroom RT-11 Teaching Labs RT-12	125,792 57,895 67,896	105,409	0	133,768	0	154,347	28,556	205,797	225,281	257,246	131,454
Open Labs RT-14	33,676	26,001	0	32,996	0	30,458	-3,219	50,763	55,740	63,454	29,777
Research Labs RT-21 ^B	41,468	37,680	0	71,453	29,985	128,249	86,781	181,380	181,380	362,760	321,293
Academic Offices RT-17 ^C Other Academic Dept RT-15/16 Library RC-40	82,295 7,996 98,032	97,155 7,996 106,596	14,860 0 8,564	124,844 11,108 136,185	42,549 3,112 38,153	144,051 12,868 157,760	61,756 4,872 59,728	192,067 17,157 210,347	207,641 17,089 209,515	240,084 21,446 262,934	157,790 13,450 164,901
Admin Offices RT-51 ^D	55,774	74,511	18,737	103,510	47,736	119,908	64,134	159,878	118,019	,	144,073
Assembly & Exhibit, Gallery & Theatreworks ^E Other Admin Dept Space RT-52	20,751 35,614	37,764 35,614	17,013 0	55,400 49,474	34,649 13,860	65,372 57,312	44,622 21,698	89,680 76,416	89,295 76,114	113,987 95,520	93,237 59,906
Physical Plant RC-55 ^F Academic Total ASF	12,396 513,793	37,992 566,718	25,596 52,925	52,777 771,515	40,381 257,722	61,139 931,464	48,743 417,671	81,518 1,265,003	81,196 1,261,270	- ,	89,502 1,205,383
Academic Total GSF	1,116,941	1,231,995	115,053	1,546,476	429,535	1,825,449	708,508	2,368,557	2,249,482	3,125,412	2,008,471
Student Life ASF	Existing	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta
Athletics-Dept of Athletics ^G	26,396	95,523	69,128	124,916	98,520	42,310	141,537	182,050	294,762	222,562	196,167
Physical Education & Recreation ^H	42,808	107,842	65,033	128,258	85,450	68,618	147,990	179,200	241,920	224,000	181,192
Student Union ^l	62,592	75,523	12,932	104,916	42,324	100,329	121,537	162,050	161,409	202,562	139,971
Student Life Total ASF	131,796	278,888	147,092	358,090	226,294	211,256	411,065	523,300	698,091	649,125	517,329
Student Life Total GSF	286,513	606,279	319,766	663,669	377,156	406,907	751,961	939,019	1,144,536	1,148,727	862,215
Housing ASF	Existing	Ideal	Delta	Target	Delta	Target	Delta	Target	Delta	Target	Delta
Student Housing Total ASF	180,442	319,327	138,885	532,942	352,500	603,442	423,000	814,942	634,500	1,026,442	846,000
Student Housing Total GSF	378,841	610,316	231,475	966,341	587,500	1,083,841	705,000	1,436,341	1,057,500	1,788,841	1,410,000
Total	Existing	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta	Guideline	Delta
ASF	826,031	1,164,933	338,902	1,662,547	836,516	1,746,162	920,131	2,603,245	1,777,214	3,394,743	2,568,712
GSF ^J	1,782,295	2,448,589	666,294	3,176,486	1,394,191	3,316,198	1,533,903	4,743,917	2,961,622	6,062,980	4,280,685

Notes

- A. ASF per weekly student contact hour (WSCH) = (20 ASF/station)/(30 weekly room hours x 67% station occupancy) = 1.00 ASF/WSCH; Fall In-person Credit Hours used as proxy for WSCH
- B. 40 ASF/Faculty FTE is standard for comprehensive institution; 250 for research institution; gradually steps from 80 to 180; (average of faculty and faculty FTE)
- C. 170 ASF/Faculty FTE is standard; Because of high ratio of Faculty Headcount to Faculty FTE, used 170 ASF/Faculty Estimate (average of Faculty Headcount and Faculty FTE); Assumed 7% of faculty are online only
- D. 170 ASF/staff requiring an office. Assumed 90% require an office.

- E. 22,450 ASF core allowance plus 6 ASF/student FTE above 5,000
- **F.** 6% of total campus ASF excluding residence life space and existing physical plant; existing includes plant building only
- G. 50,000 base + 10ASF per FTE for FTE over 3000; arena at 15,000; fieldhouse at 20,000; notatorium at 25,000.
- H. NIRSA ASF guidelines per student headcount: 11,524/1,000 (under 9,999 students); 9,866/1,000 (10,000 - 19,999 students); and 8960/1,000 (over 20,000 students)
- I. 9-10 ASF/student FTE is standard; 10 ASF/FTE used due to high commuter rate
- J. Projected ASF:GSF ratio is 0.6

Appendix B Open House Workshop

In compliance with Colorado state mandates, UCCS completes a Master Plan at least every ten years to evaluate the long-term capacity of its campus and guide the next phase of development in support of the university's mission. During the 2011-12 academic year, the university has undertaken this process with particular attention to the growth potential on the North Campus.

During November of 2011, the university held two open house sessions for students, faculty, and staff to provide input on future campus development. Posters displayed analysis of the campus, planning principles, and initial sketch plans of campus organization at full build-out. Participants had the opportunity to comment on the work displayed as well as to complete a planning activity that explored how new facilities to support a 20,000 person student body would be organized on campus. More than 60 students, faculty and staff attended the open house sessions, providing a wide range of valuable input to the planning process. The open house materials and the UCCS community input provided during the sessions are summarized in this appendix.

In the future, what will attract and retain students at UCCS?

Student Life

Dorms

- Residence halls are the biggest draw to a university. The current halls are outdated and not conducive to a "living" atmosphere. Updated halls and academic communities would provide better access to social and academic areas.
- Living space close to University
- Connectivity & proximity from new dorms to academic buildings. Students love the idea of leaving Summit and being in COB within 2 minutes.

Community

- Community- being brought together to work together, play together, etc.
- Strong campus community with ties to larger Colorado Springs community/Pikes Peak region
- Active student life
- A large, fun and diverse student life presence
- Fun stuff like recreation opportunities and ample parking.
- Community feel
- Small community and active student body
- Balance of personal growth and non-academic experiences with academics. Other students like themselves (hopefully good students!). Younger students like more hoopla.
- Creating a sense of campus community and school pride. This will come from athletics and a relocated student union.
- Areas for larger student life and activities. Our school is mostly commuter so students need interactive reasons to stay on campus.
- More student life space. Other public spaces would allow for better relations with the University.
- Available housing and parking will create a real campus feel and give the campus more than a "CU Branch" feel.
 Students want to know that there's a space for them here....and right now it's tight.
- Student-centered student union with ample space consideration for programming, specific student club meeting and event space. Informal meeting space, too. Ideally, consideration should be given to student affairs services located in the student union. Staff office areas and storage are important as well.
- Enough areas for student life opportunities (recreation, housing, unions, open unplanned space). As the campus grows it needs to focus on the development of the "whole student" and provide space and facilities to provide that enriching environment.

- More spaces for non-traditional students and their families
- Student focused places to gather for study, hanging out, eating, playing
- I think students would be drawn to a campus community. For example, most schools like CSU, UCLA and the other UC campuses, as well as private schools and other public schools built their campuses so students have everything that they need on campus. For example, sports, entertainment, eateries, and movie theaters for the public. If there was a Target at the University Commons area students would barely have to go off campus for anything. That way, students really live on campus and there is something to do here at night and on the weekends. This is particularly important if we have a light rail or tram that is automated 24 hours a day (or close) to go to the University Commons for shopping, and all other areas on campus.

Athletics

- It takes years to develop athletic and social programs -Athletic facilities
- Football!! This school needs a football team!
- A football team

Sense of Place

- Incredible physical environment both in the local area, region and on campus – maintain open space; encourage outdoor activities – biking, hiking, etc.
- Keep natural landscape undisturbed
- A nice environment might help a lot, I know that was very important to me at least
- Environment! Maintain our unique Sense of Place
- Preserve incredible physical setting capitalize on that rather than ignore/damage it.
- Preservation of natural areas that create great spaces to both hang in and pass through. Preserve views.
- Keeping some natural features.
- The colors & landscaping of the East Campus are lovely
- and I'd like to see that continue.
- Get rid of surface parking in most visible sites along Austin Bluffs!
- Our bluffs are sacred land. Something to consider when being respectful about where building. For further info talk to Linda Watts in Anthropology
- Unique landscape
- Natural open space. Pikes Peak views.
- Keep the views and easy movement.
- Attractive campus.
- Open space and environmental amenities. Attractive

buildings and facilities. Non-car based transportation within campus.

- The "look' form North Nevada of our campus should resemble the "college-feel" - academic buildings, housing, bookstore, athletics, fine arts Center, etc.
 This view of the campus will be the most visible to our community and a huge selling point for recruitment.
- Developing a unique sense of UCCS campus character, something students and want to identify with and spend time on.
- It is a bit contradictory to have Pikes Peak, Garden of the Gods & Pulpit Rock etc. be focus points and part of the future campus identity but not significantly incorporate our immediate environment into the campus plan.
- Apply City Landscape setbacks & buffers when development occurs adjacent to City streets or nonuniversity development.
- Creating more university structures (housing, stadium, performing arts center) while maintaining the lands natural beauty.
- Preserve existing open space feature of campus wherever possible especially on N. Campus as elevation ramps up from N, Nevada.
- Great views and hiking/walking trails for students. Easy movement between all buildings from new athletics to East campus.

Academics

Breadth of Curriculum

- Strong academic culture with diverse majors and minors
- Offering more majors while enriching the ones we have
- Academic programs
- Upper level degree opportunities
- Programs of interest to them.

Quality of Curriculum

- Culture of academic excellence
- Quality academics and facilities
- A quality educational and student experience that includes adequate academic facilities.
- Good teaching. Consistent instruction fewer adjuncts
- Good teaching will attract/retain students so meet full
- Quality education with unique opportunities in research, instruction and service that connects to local and international community.

Student/Teacher Ratio and Class size

- Small, intimate classes where students and faculty

- actually know each other
- Provide enough space and faculty members to maintain small class sizes and foster close professor-student relationships
- Keeping the size down most students really appreciate the small class sizes (best of 100-level are average 40 per class)!
- Keeping a small school feel while offering most of the programs of a big school.
- Retain small class sizes
- Small class sizes

Costs

- Cost/Value of degree
- Reasonable tuition
- Reasonable cost for quality product

Miscellaneous

- On campus resources are also very important
- More chain restaurants in the cafeteria
- RESEARCH, RESEARCH
- Large theater
- Practical application of education to employment
- Sustainability measures on the landscape
- Listening to their concerns and feedback like today. More opportunities avenues for arts, culture and recreation.
- Retention has been a problem. Ask Barbara Gaddis.
- An intelligent, wise, welcoming and helpful University Administration trained to listen and aid students through their college transformation.
- My only suggestions is that we take into account Universal Design principles as we welcome students, faculty, and guests with disabilities onto our campus

Where will the core academic campus and the main student life areas be located? Where will students, faculty, and staff park?

Location of Core

North

- Core Area? Very challenging. I don't' really know. Probably has to move north. Nothing is ideal.
- Probably North Nevada is the best site, though it would be really important to make it "blend' with North Campus.
- Dorms and Academic buildings on N Nevada
- I feel the north campus option looks the best, but we really need to watch our growth.
- Two core academic areas 1 in center of Nevada; 1 in center of Austin Bluffs
- Should have 2 core areas, present location and north campus
- Split the campus into two parts. Keep current buildings as engineering and business focus. Make new buildings cater to nursing and Arts/Education. Create a tight knit community down on North Campus to make students fell more connected. University Village should really feel like a student community.
- All entertainment facilities (Athletics, Visual and Performing Arts) should move towards N. Nevada to integrate with University Village and easy access to the Colorado Springs community.
- I feel like the academic buildings should first be built around the main campus area followed by branching out with additional parking near the new Health Sciences Building. We should put academic buildings and dorms in our current parking lots to have the academic spaces nearest each other. Make the area on Nevada focused on health sciences and nursing and move them from Main Hall to be near the new Health Sciences Building for Psychology. Make that area a hub for the public (a theater space), a place for Theatreworks as well as a arena, make a sports area near there for the public and our students, and have the light rail come to the main part of campus from that area.
- Pocketed academic spaces behind Community feebased buildings.

East

- Other Academics can grow East on the hill.
- Core academic campus should be focused in the main campus and University Hall
- I like the East centered plan the best.
- East campus seems most ideal...
- Center of campus shifts East is preferable.
- Build to East first
- Core academic areas should be located toward the center of campus (as much as possible given the linear nature of the campus).
- The setup is great now I believe.

- Keep the core where it is for academic buildings so that people can get from one class to the other easily.
 Extend academic buildings to the east. If necessary, buy property across the parkway.
- The bluffs (not on them, at the base of them). I like the east core development more, with residences and parking north.
- The main academic areas, in my opinion; should for the most part stay where they are at. If they must be put in different locations, similar ones should be clumped together.
- I think core academic buildings should be in center(where it is now) and moving East at first. Later to Nevada.

University Hall/Beth-El

- University Hall needs to be more connected to campus.
- Beth-El more central to included in campus life.
- Repurpose facilities in University Hall
- Move Beth-El to central ... and put Beth-El nearer for Athletic trainers and strength and conditioning.
- Relocate Beth-El central to Rec Center, Athletics and Peak Vista for athletic trainers and sports medicine student

Housing

- Like the residential housing on East Campus
- I like the idea of new housing villages located between Main Hall/Cragmor and University Hall with parking. Also, another housing area near North Campus, Athletics area would be good.
- I think putting dorms down on N. Nevada is a good idea, especially if there are shuttles. Similar to what they have at CU Boulder: seems to work out well.
- Have recreational areas near dorms
- Housing areas need rec facilities nearby.
- Main student life areas should be located at North Campus originating near Rec Center
- I lived in the dorms and feel that housing should grow! Housing should be at the heart of campus with Recreation. Academics on either side.
- Student housing will be interspersed through the campus located adjacent to recreation fields.
- Move housing down the mill if necessary.
- Making dorms close enough so people don't have to walk so far in the dark at night. Some dorms close to UVC for activities.
- Needs more dorms
- Upper classmen housing

General

- Campus needs more density
- Encourage compact, dense development (pods) with direct pedestrian/bicycle/vehicular access between pods.
- I like having the density of building going east first.
- Condensed areas of academic colleges (Engineering, VAPA, Business) would create better community within the disciplines and easier access to classes
- There should be sections. I.e. Academic Section, Rec Section
- Form academic cores with programs (education, etc.) KEEP ACADEMICS TOGETHER!!
- I think it's important for academic buildings to be consolidated in one area. When people need to get from building to building between classes, they want to get there as quickly and easily as possible.
- Make sure neighborhood across the way (Cragmor) is fully considered.

Miscellaneous

Greek Row

 As part of Greek life, I would like to see a Greek Row on campus, Individual houses or resident halls centralized around a common area would be nice, within walking distance to the center of campus.

Safety

- Concern for student safety if housing is located near public interchange (performing arts center, athletic fields)

Student Life

- Student life centered at center of campus (corner of Austin Bluffs and Nevada) with other housing near the academic areas
- Create a main student life area in the central part of the university land holdings
- It will be important if we continue to expand as predicted to have an expanded multi-cultural center not just a union. This means having bigger spaces for women, lgbt, people of color, disability services (not on top of a hill please) and keeping student space with academic buildings.
- Separate, new student union located nest to recreational and existing housing village. Over time, this location may be the center of campus.
- I like the idea of keeping student life central on campus.
- Student life will be more spread out to accommodate increase.
- Expand University Center!

Athletics

- Put athletics or upper classmen next to athletic facilities. Condense all athletic facilities.

Energy

Bill Good is working on a Master degree in Engineering in space operations. He is taking Space 5595 class.
 There are 4 students in the class; project is to design a satellite system that can control 1 million mini-nuclear reactors – about 1 megawatt in size. Could locate one at the substation at the corner of Austin Bluffs and Stanton. They are proposing something like the X-prize for the first non-government space flight for someone who develops the small 1 megawatt nuclear reactor.

Transportation

Spine

- Love the spine idea, especially one that incorporates a shuttle road & a pedestrian trail (that meanders a bit)
- Spine is a good idea.
- The concept of a spine is very nice with nice kiosks and views of the Front Range.
- Difference in scale of paths spine=big, single sidewalks, dirt paths all have a role.
- Spines merge and separate
- Building aspects of the pedestrian spine should be implemented soon.

Transit

- Good transit system within campus that can move people effectively.
- I love the fact that there are plans to get the buses onto their own area and off the main roads where traffic is sure to be a problem.
- On campus transportation timely & reliable & frequent
- Need to look at transit hub on east side not on Nevada Ave. but actual pull-off – bring Frex, internal shuttle, trolley
- Tie in major transit center near new union (recommended above) near the Rec Center area.
- Agree to have Eagle Rock close road and create a culde –sac
- In University Village parking lot, don't make any more concrete out of earth. Make everyone buy a bus pass (like in Boulder) to improve public transportation to campus (it's not socialism – now taxes subsidize cars).

Alternative Transportation Methods

- Offer free bus passes. Encourage biking: free bike if student agree to not bring a car to campus; support

- bikes bike shop open daily, etc.
- Also include options for bikes, pedestrians and mass transit.
- Trails for recreation
- Focus on sustainable transportation options
- Make sure we explore other non-motorized options Need more bike trails
- A gondola would be brilliant. It would be a huge cost initially, but over time (I have not done the math on this). I think it might actually save money. Costs of bus maintenance, gas and driver salary would be cut. It would also make transport across campus more convenient. Instead of waiting an hour for a bus, students could step onto a gondola and be able to exit at multiple stops across campus.

Parking

Interspersed

- Faculty and staff should have parking that is separate from student parking
- Parking should be available near each center (sports & recreation, each academic center, near Beth-El, and the parking on Austin Bluffs should be kept.
- Parking should be slightly scattered to allow people to park relatively close to which ever building they want to get to.

Periphery

- Parking at the ends
- Limit parking on campus!
- Park and Ride, except have faculty/staff parking on the core campus.
- I would like to see that parking is eliminated from the central campus zones, so that a pedestrian-focused campus is created. Parking/public transportation should be zoned to the campus perimeters.
- I would like to see larger parking nodes that are more on the outskirts – accessed by shuttles and paths. Some smaller lots within campus, but not dominating the landscape.
- Staff and students will still park at 4 Diamonds.
- If we continue to expand parking at 4 Diamonds and make the transit options up the spine as fast and efficient as possible, the land down there will be a great parking resource.
- Park on the edges of the campus- NOT where walking and biking traffic are focused.
- Parking in focused areas end of campus (large lots) with garages and other lots interspersed.

- Parking at periphery of campus in high-density structures and underground (with green roofs on top
- see UNC Chapel Hill as a model). Parking should be kept out of the core (interior) campus and pushed to the margins, with effective bus/bike/pedestrian/ transit internally.
- Parking located on North Nevada near future buildings that will also draw community. Parking area between Main Hall, Cragmor, and Beth-El.
- Could we work with University Village to allow students to park on some of their available parking? Could there be parking between facilities and University Hall in the open lot over there?

Structures

- Need 2 new garages
- Create more garage parking in available areas to save space but create more availability
- More parking needed obviously go vertical in places but don't block the view
- I think parking garages are the best bet. They may cost more, but they take up less surface area while providing more parking. Plus all spaces in the garages are basically the same distance from the building.
- Parking will require structures. Plan phased construction to evaluate impact of online attendance
- Parking issue, I suggest a bigger taller parking garage, underground even.
- Parking should focus under buildings to keep the natural landscape. Parking will always be a problem but as long as there is a plan for new (underground) or more shuttles [sentence not completed]
- Underground parking (beneath buildings)

General

- Smart & plentiful parking/transportation
- That's the million dollar question! Parking is a big challenge.
- Parking is a big problem.
- Need more parking
- More parking.

General comments

Communication with University

- Listen to students in terms of vision
- Please remember to include our mission to serve the local community. We need design (buildings, parking and signage) that welcomes them, not mystifies them.

Master Planning Process

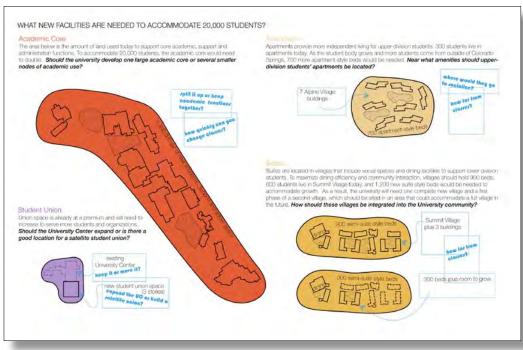
- I can tell a lot of thoughts has already gone into this. Thanks for the opportunity to contribute.
- I like the concepts presented.
- Nice to have this opportunity.
- Please continue to listen / and implement nonadministrative perspectives – students faculty input counts. Thank you.
- Good exercise challenging building site!!
- Good Session Great idea to open it up for students, faculty and staff.
- Thanks this is great info and a great opportunity.
- Doing a great job.
- Nice drawings! Keep up the great work.
- I like the ideas that are in place! Good Luck

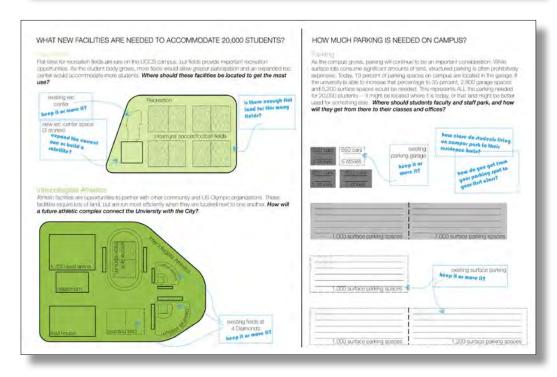
Facility Safety and Human Factors

- Hub 3 access to Centennial Hall is hazardous. There's only 1 set of stairs and it's not centrally located (at east end). One in the middle would be helpful (near bus stop) for rainy/snowy days. I've slipped several times and actually ended up on backend once. Not fun in the snow with a bag full of books.
- The east stairwell doors in Columbine need to be wider
- Double if possible it is a real traffic jam there with an easy solution.
- Library Ventilation Improvements during summer, the library is unpleasant to study in for more than 90 minutes (I take full summer loads and read fall textbooks then. I'm at the library a lot). Body heat and greenhouse effect and summer heat. Last summer had numerous days in the 90s.

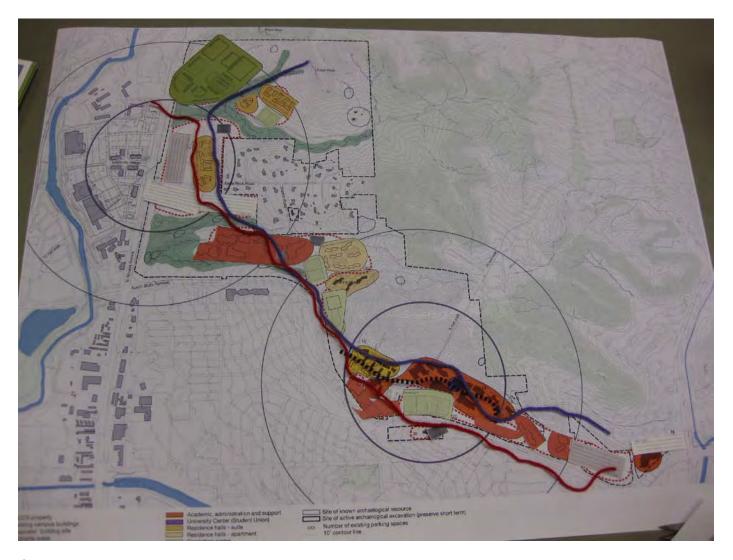
Growth

- Limit campus growth students have expressed how essential the small campus population/class size is to what makes UCCS special/attractive
- Why does UCCS have a growth imperative? Is having

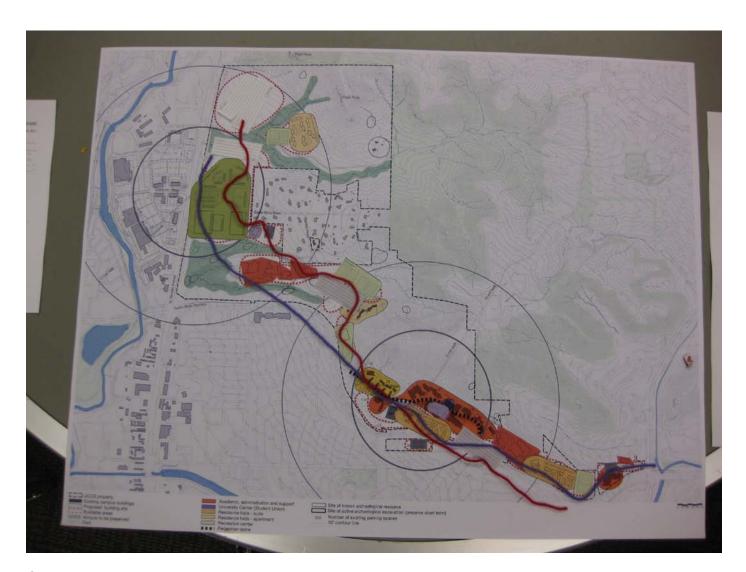

- 20,000 students good for the community/land/existing student population?
- We may want limited growth to increase overall quality of the student body, while reducing pressure due to growth. The campus could lose its friendly atmosphere if to grows too much. Buy some of the properties in Eagle Rock area that we do not own.


Scheduling/Programming Space

- There are two critical issues that should be considered. Space for classrooms should reflect an analysis at the classroom, seat and college level. Thinking about needs in the aggregate are[sic] likely to underestimate the true capacity requirements. There are also too few offices so office space needs should be considered carefully.
- UCCS Master of Engineering in space ops
- Also as you add housing please don't require students to live on campus. UCCS is the only school that allows freshmen to commute out of the big state schools: CSU, CSU Pueblo, CU Boulder.
- High-tech Energy Research Center
- Recognize separate academic spaces decreases interaction.
- Engineering and Applied Science needs new infrastructure. A new complex will allow the modernization of facilities to meet the goals of international level research. Suggest this complex be in the North Campus with LAS taking over the current Engineering Building.
- More functional classrooms like the Engineering (math) building versus overcrowded cubes like Columbine.
- The campus has a strong initiative to offer (and increase) conferencing services. Is this being factored into planning? Also, we want to bring alumni here but often meet elsewhere because of the challenges We need to work on the perceptions of those challenges as well (i.e. how the perception that it's difficult to come to and park on campus and find your building can deter potential students, visitors, alumni and parents) How much is it a deterrent? How can we improve the perception?
- Also with the growth of this campus it is important not to forget to focus on our Media Services & Film & Video programs on campus. Film & Video can be a very important component to communicating what we do on campus to the surrounding Community. Colorado also has a rich history in filmmaking & is making a comeback.
- The University of Alaska, Fairbanks has a building open for students for student study only. It is open 24hours (perhaps use a student ID card swiping machine. Would it be possible to have such an indoor facility here?


- With the ongoing economic stagnation, more students are enrolling. Many of us find library computers are, at times, hard to find. Instead of expanding facilities, can we recommend improvements to I.T. and increasing the number of computers in the library?
- This first might start with making sure we have classes from 8 am- 10 pm Monday through Friday to utilize parking on campus. Then build the Health Sciences Building followed by the new corridor for the light rail. This would be followed by the new nursing Health Sciences Building etc. Then we could build a new academic building (in a current parking lot)and dorms (between the main campus and UHall).
- Consider sending campus buses to the TJ's area.

Planning Activity: A Campus for 20,000 Students

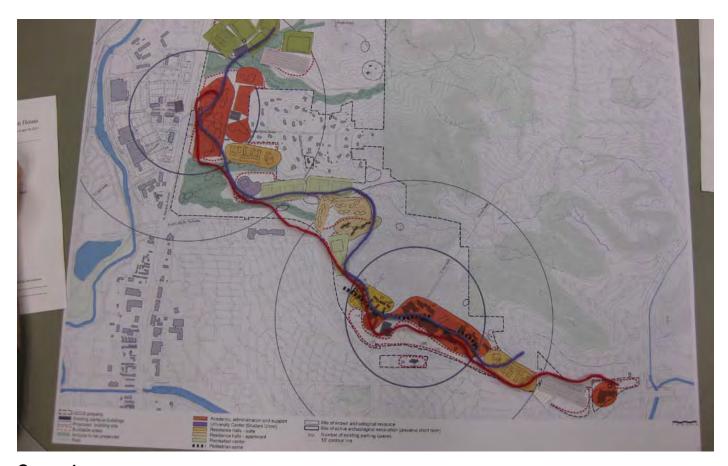


Two groups chose to create a second academic core with a new node of development west of Alpine Village.

Group 1

The group that created this plan focused on promoting healthy lifestyles. They chose to locate parking at the eastern and western end of campus and establish well-connected trail systems to get to the core. They suggested that Beth-El College be located closer to Center and the Academic Health Services Center and that dorms should have recreation fields close to them.

Group 2


This plan located academic facilities as close to the core as possible, but chose to have housing and recreational facilities interspersed throughout the campus. Students, faculty, staff and visitors can park in larger surface lots at the edge of campus or in garages closer to the core.

Three groups created a second academic core along North Nevada Avenue.

Group 3

This plan creates a concentrated housing district with recreational facilities that connects the two cores together. Athletics facilities are located to the north and parking is located at the edges of campus.

Group 4

The student union/university center is proposed in the center of the two core areas with housing and recreation adjacent. Parking is located near each main area and athletics is concentrated to the north.

Group 5

The group that created this plan focused on creating a new community center for students on the North Campus. To support this center, academics, housing, and parking are located nearby.

Two groups took other approaches to organizing the academic core.

Group 6

In this scenario, all academic uses are centralized in the Core and East Campuses. Housing, recreation, and athletics are located on the North Campus, which students can access by riding a gondola.

Group 7

This plan proposes two new academic nodes: one at the East campus and one near Alpine Village. Housing is interspersed throughout, creating a mixed living-learning community along the spine. Athletics and recreation are located on the North Campus.

Appendix C

GES 3170: Saving Place

Class Input

Group 1

- Expand the core centralize academic functions
- Place a parking structure at University Hall for parking needs at that end of the campus
- Put housing on main campus place parking structure south of current parking structure/set down at lower elevation will not block views
- Apartments should go together
- Parking structure with field on top per current draft master plan
- Shuttle Spine (red) follow Stanton Rd. to where it turns into Eagle Rock neighborhood then parallel Eagle Rock then cross arroyo stay out of arroyo
- Place a new university center at housing down on north campus so activity center is near living area
- Pedestrian spine (purple) through buildings and follow a more natural path

Group 2

- Putting all new housing together to create a sense of community
- Put all academic together on core campus
- Put a small academic support facility (learning centers, tutoring, etc.) in the middle of housing
- Concept is that you can leave housing and go up to consolidated academic core and move from class to class and then go back "home." Then during study back at housing help is available at the learning centers.
- Could have a second core that is the medical region and visual and performing arts region down on N. Nevada. Thus housing would be in the middle and students could go in either direction.
- Pedestrian spine (purple) to follow natural facilities and support traffic volume
- Trail (Burgundy) to follow more natural contours Shuttle Spine (red) - similar to group 1

uccs

Columbine Hall Austin Bluffs Parkway Colorado Springs, CO 80918

GES 3170 Saving Place Carole Huber

February 28, 2012 Gary Reynolds Executive Director of Facilities Services University of Colorado at Colorado Springs 1420 Austin Bluffs Pkwy Colorado Springs, CO 80918

Dear Gary,

The physical setting of the University of Colorado at Colorado Springs is one of the most unique and interesting aspects of the school. The campus itself should not revolve around construction of new buildings but rather preservation of the surrounding natural beauty such as the Bluffs, Pulpit Rock, and Pikes Peak. As Colorado is a state widely known for outdoor living due to the inspiring views and has over 300 days of sunshine, one must be cognizant of the reason out-of-state students decide to enroll. Although the new expansion seeks to make more room for these incoming students, we fear that a 4,000 seat arena and buildings on the expansive natural grasslands might cancel out some of the aforementioned special qualities. We are especially concerned about the proposed arena because it puts the focus on the public domain of Colorado Springs rather than on the needs of the students. Another concern is the impact this huge expansion will have on adjacent physical settings. The campus is at a lower elevation than the majority of the surrounding Bluffs and new structures will likely increase erosion and runoff to the detriment of the surrounding area. The only option available in order to preserve the natural features, other than minimizing the amount of new construction, is to utilize the east campus which already has some infrastructure in place. We thank you for considering our plea to preserve the natural environment of our land.

Sincerely,

Karee Milowicki

Melissa Greenleaf

Josh Richards

February 28, 2012 Gary Reynolds Executive Director of Facilities Services University of Colorado at Colorado Springs 1420 Austin Bluffs Pkwy Colorado Springs, CO 80918

Dear Mr. Reynolds,

We are current students at University of Colorado at Colorado Springs are writing in regards to the plans we have seen of the new Master Plan for UCCS. We as concerned students would like to voice our opinion as to what we would like to see in the future of this campus' expansion and its new facilities. We have seen in the Master Plan that this campus is planning on shifting the core towards Four Diamonds. Our first concern is that new buildings and sporting structures will work against nature and not with it. There is a lot of beautiful landscape between the current campus and Four Diamonds and we would prefer to see as little damage as possible to the existing landscape. We mention this concern because when the new buildings are erected, we would like to know that some of the natural scenery will remain and will not be covered with unnatural things such as parking lots, roads, and to some extent the housing sections. One suggestion we have is to incorporate native plants that may be put into natural gardens around campus tying campus with the surrounding area.

Along with keeping the campus looking as natural as possible we would like to see new buildings holding up to and beyond current green standards, and we want to see if rooftop access for greenhouses or study sessions would be available. Current students will be able to utilize space of the roofs for activities and gardens, and the green on each roof will help to keep the heating bill down. We believe it will also make the campus more attractive.

Something that we feel will not be as beautiful as the rest of the campus is parking structures. We realize making these look good is hard but we feel that parking structures should also be created to waste as little space as possible. As the expected increase of students is estimated to reach 30,000 heads, there will be a lot of need for new parking structures and on campus parking. The idea of building the parking garage in the wallow near the Alpine Apartments is a good one that we support. What our hope is however is that with the rest of the parking structures there is a way to make them less of an eye sore while still make them as convenient as possible. We would like to consider building parking garages under the new buildings. As we discussed when Mr. Reynolds came and spoke to our class these structures are very expensive and will require an increase in student parking fees. We are aware that most students would prefer not to have to pay more, but one thing that should be taken into consideration is that this building process is going to take a few decades, therefore we believe underground structures may still be worth considering in the future budget We believe the end result will both look and function better in the long run. We understand that controlling parking can be difficult; we would just like to make sure that design is taken into consideration for every new building that is on this proposal.

Now we know that plans are progressing for a commercial greenhouse here in the near future and we could not be more excited. What we would like to request however is that this is not the only garden on campus and that locations other than behind Main Hall are considered. After our meeting with Mr. Reynolds in our GES 3170 class on February 14, 2012 we realized

that rooftop gardens would be a possibility. With that said we would like to propose gardens that are designed like the one at Heller Center, raised, but then also have the garden boxes raised off the roof themselves. This way the building can be maintained at any point in time and students can have access to either gardens or greenhouse(s). As for the placement of the proposed commercial greenhouse could we not consider building that on a current rooftop? Say the roof of the library? We understand that rooftop access is a complicated issue, but not something that should be in the way of a greenhouse. Or if the rooftop is truly not convenient then somewhere on the main campus where people can see it. Half the point of moving the garden/greenhouse up to campus is so that people know it is there and so that they will be inclined to participate. If the greenhouse is hiding behind the main part of campus we believe people will not go work on it. There are many advantages to having a greenhouse on campus but that is a letter in itself, all we wanted to do here was inform you of some of our concerns and requests. Please consider our suggestions and we look forward to hearing from you soon.

Sincerely, Cody Lewis and Brett Miller

February 28, 2012
Gary Reynolds
Executive Director of Facilities Services
University of Colorado at Colorado Springs
1420 Austin Bluffs Pkwy
Colorado Springs, CO 80918

UCCS C

Columbine Hall Austin Bluffs Parkway Colorado Springs, CO 80918

GES 3170 Saving Place Carole Huber

Mr. Gary Reynolds,

Thank you for your time spent working on the expansion and growth of our campus here at University of Colorado – Colorado Springs. We appreciate your extra time spent with our class and explaining the details of the Facilities Master Plan to the student body. We thank you for the opportunity to be heard as a student body in this matter.

In this letter, it is our intent to offer some ideas concerning transportation and parking around campus as UCCS plans on growing and expanding. We know that transitions are not easy and that phasing into new systems as the student body expands is essential to the process, but we are greatly concerned with a huge expansion plan when we feel that current systems have not been effective.

First, we would like to mention that the idea of the spine of transportation concept in the Facilities Master Plan is a positive one. We like the idea of the spine, but the process needs to be perfected and monitored for specific student and faculty needs and adjusted accordingly. More specifically, if the campus is expanded toward the North, therefore stretching the span of UCCS further than it already is, effective transportation that is available quickly to all students and faculty is crucial.

A few ideas that we agree with are the express shuttle service and the shuttle transportation only route along the spine of the campus. Not only do students need to get from one side of the campus to the other in a timely manner, one must also be able to do this safely and efficiently. This means less wait time at stops and more frequency in shuttle arrivals. Students and Staff need stops that are easy to get to and routes that are fast at getting to the destinations.

A problem we see with the current system is that there is a lag in time between shuttles and the time wasted on these routes is frustrating for the passengers. Once the shuttle arrives, there is wasted sitting time waiting for departure time. Next, the shuttle begins its route traveling on unsafe roads with loads of traffic to a central stop on campus that is often another five to ten minute walk away further. Many times, shuttles will fill all the seats and the waiting time is doubled for anxious awaiting passengers.

A question we came to through our research is why is the capacity on these shuttles limited to the number of seats? The shuttles are equipped with handles and standing support, but it is not being implemented on the shuttles, therefore it is not using the shuttles to their greatest capacity. There is an inconsistency in the schedule of busses because of the way the scheduling of classes works out. There are large spats of people all waiting at one stop for one bus. Why not spread these stops out and offer more busses at a higher frequency so that we are not packing out busses at high demand times. Our internal transportation system should mimic that of a busy city; busses only stop long enough to let departing passengers off and let new passengers on.

Second, parking is another huge issue with the campus. If the university desires for student growth by the thousands of students, we need to accommodate for that in the parking for those students. The biggest complaint is the parking permit dilemma; I buy a permit so that I can park on campus, yet too many passes are sold so I am not ever guaranteed a spot and the majority of the time, I do not find a space anywhere near my next class. The demand for a better, more efficient parking system is necessary for an ever growing school.

Surface parking, though more affordable, is a waste of space on our campus that already lacks critical building space. Building a parking garage, half underground half above ground, would be a better option to add for more spaces. We suggest the garage that has one way routes so that there is not two-way traffic jams in the garage. The idea of placing athletic fields on top of these garages is one that we find beneficial.

We also collaborated in creating a possible solution to both parking and transportation issues. Our suggestion: The Hub. These Hubs would be parking garages located on the north end near the arena and possibly a second Hub near

University Hall. This would be where students parked for the day and could be guaranteed quick transportation to the part of the campus where their class was. This is where all the shuttles would meet up and arrive every few minutes; each bus with a new destination. Busses could be faster at getting passengers to their destination without having to wait for other stops, all the while, everyone is getting closer to where they need to be.

Then, in addition to specific express routes to main academic buildings, there would be other routes that would be available for higher traffic times during the day as well as offering inter campus transportation. For example, I would take the Columbine Express from the hub parking garage to Columbine Hall then I hop on the bus that would take me a little further to the library. The main idea of this route system for the shuttles is offering a more frequent system that gets students and faculty exactly (or close to) where they need to go faster.

We also briefly discussed the idea of a bike share program. This would work similarly to how a stroller system works in the mall. You pay or swipe your card to rent a bike from outside your classroom and ride to your next destination. There would be several stops across campus that you can pick up and drop off bikes from and there is an accountability piece that comes from either swiping your student ID or a credit card so if a bike goes missing, it is accounted for. If we could only make one change to improve transportation across campus, the bike share program would be a priority.

Thank you for considering our ideas. We hope that we have shared ideas that give the Facilities Master Planning team food for thought.

Thank you. Alaina, Alex, Alyssa, Anna, Kelsey February 28 2012 Gary Reynolds Executive Director of Facilities Services University of Colorado at Colorado Springs 1420 Austin Bluffs Pkwy Colorado Springs, CO 80918

Gary Reynolds,

On behalf of the students of GES 3100 Saving Place Class, we would like to propose alterations to student life and campus activities for the University of Colorado-Colorado Springs. We understand the importance of overall campus growth, but we feel it is necessary to maintain a sense of place and a culture that values the location we share. The three main topics we will discuss are campus trails, University Village culture, and the atmosphere of campus restaurants.

The natural beauty of campus should definitely not be lost with the master plan; we believe views of Pikes Peak and the location of campus are a huge part of the appeal of UCCS to in-state and out-of-state students. We would like to see the master plan not only continue with and emphasize the natural beauty of the campus's setting but also enhance the outdoor features already present at UCCS. Hiking trails should be expanded sustainably, using proper trail building practices. Signage should also be put up, informing people of the delicate eco systems surrounding the trails and urging them stay on the trails so as not to harm the environment. Trail maps should be placed around campus or made available on the UCCS web site so people are able to see where exactly the trails lead for better planning of their walks, runs, biking, etc. Outdoor safety classes should be offered as part of the SOLE center or regular curriculum to make sure everyone who is interested knows proper outdoor skills. We recognize the campus does have limited outdoor classes available already and the SOLE center leads great trips. We propose there should be more advertisement about the SOLE center classes which will enable students to be more aware of the outdoor opportunities available to them.

We would also like to see University Village open more local stores instead of big chain stores. With the inclusion of more local establishments, we would like to see at least one focus more on a bar atmosphere along the lines of Trinity Brewing. We feel that this inclusion would allow for students to congregate in an atmosphere that is superior to the current establishments serving alcohol. These would also benefit from the future theater and stadium that are currently being proposed to be built across the street from University Village.

On top of that, we would like to propose the addition of a bar that services only those of legal drinking age with reasonable prices, bar room activities, nightly specials, and pub style food on campus. This will help to create more business for the university while also giving students a chance to be a more active part of the campus community. We understand that Clyde's has done a great job at creating a student friendly atmosphere in the University Center, but we feel that it can be improved with the addition of liquor spirits and reduction in prices of beer.

As a whole we feel that if we are able to do these three things we would greatly enhance UCCS. With the addition of trails, a friendlier University Village culture, and changes to the on campus restaurants the overall satisfaction of students would increase.

Respectfully,

Cindy Bathelt, Justin Wilson, James Chiles, Elizabeth Fluharty, Hillary Fuller, and Paul Wood

Appendix D Plan Development Sketches

OCTOBER WORKSHOP: INITIAL SCHEMES

East Campus

Core Campus

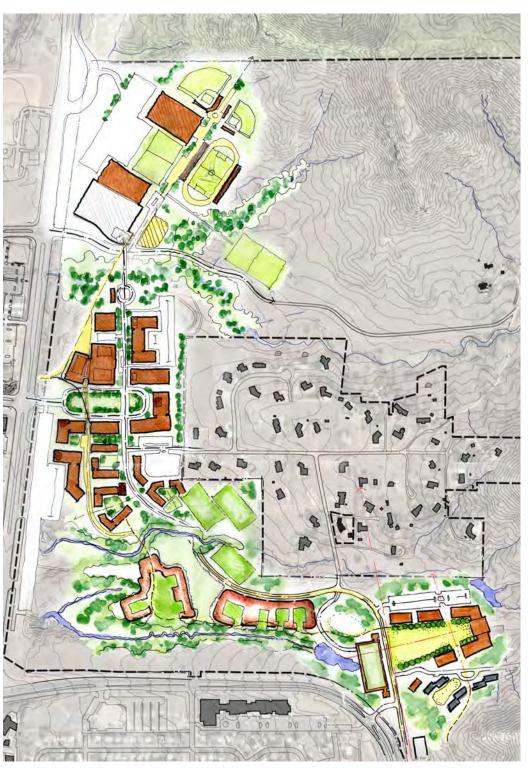
Alpine Village

North Campus

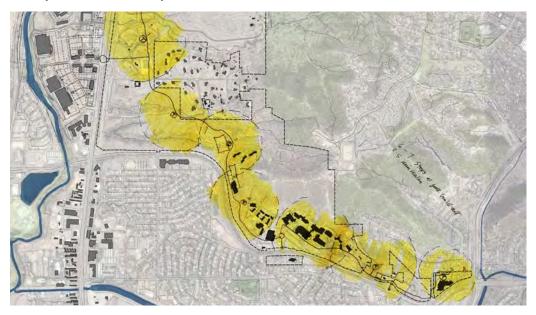
OCTOBER WORKSHOP: ON-CAMPUS SCHEMES

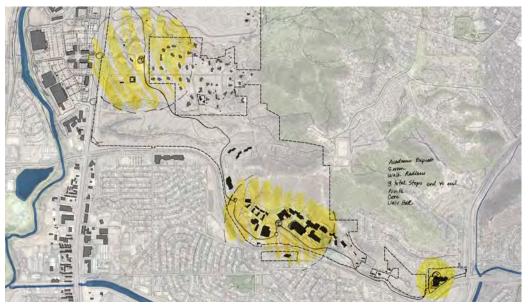
Athletics District

North Nevada District

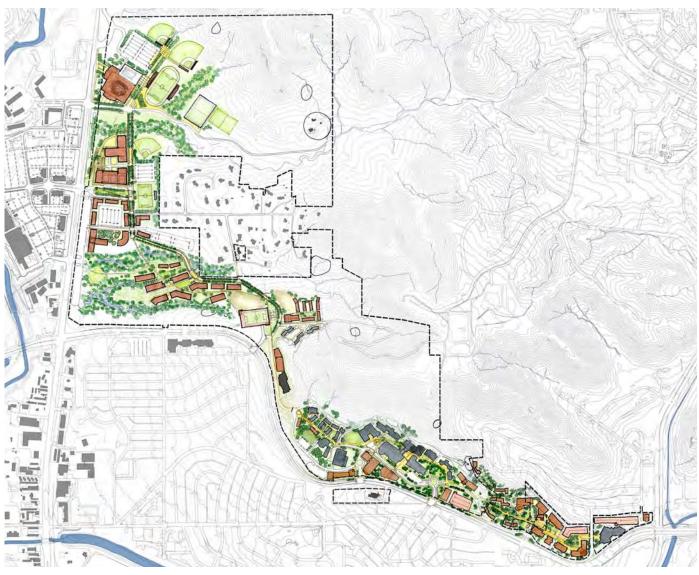


Alpine Village and the Mesa





Preferred Plan



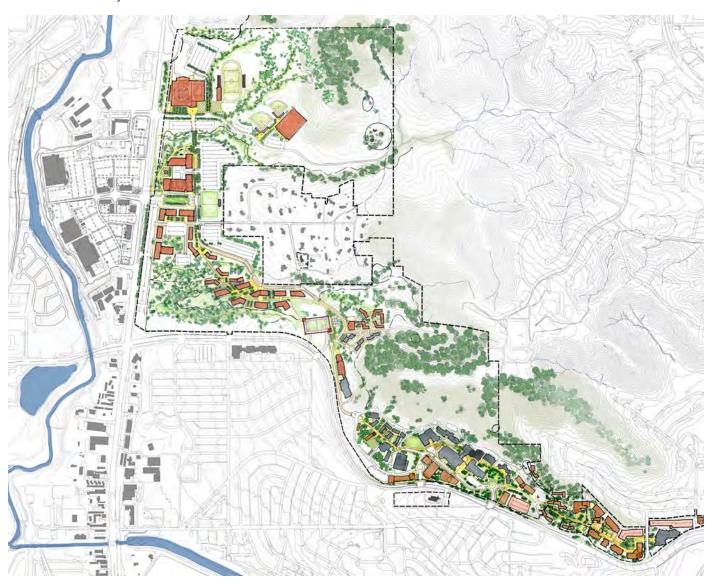
Campus-wide Transporation

DRAFT PLAN: DECEMBER

DRAFT PLAN: FEBRUARY WORKSHOP

Athletics District

The Mesa


North Nevada District

Alpine Village

Draft Plan: February

Appendix E Sanitary Sewer Phasing and Cost Evaluation

1. North Campus

a. Phase 1 Improvements:

- 1. Construct pipe segments N401, N402, & N403 before building J (Lane Center) is constructed, and connect to existing pipe segment N201. Construction Cost \$50,000.00.
- 2. Construct N101 through N110 to serve buildings A & B on the Core Campus, and building DD on North Campus. Construction Cost \$375,000.00.
- 3. Construct N201 through N203 to serve buildings C, X, Y, Z, AA, & BB. Section needs to be completed with N101 through N110 segments due to sanitary sewer rerouting around the parking garage (9). Construction Cost \$70,000.00

b. Phase 2 Improvements

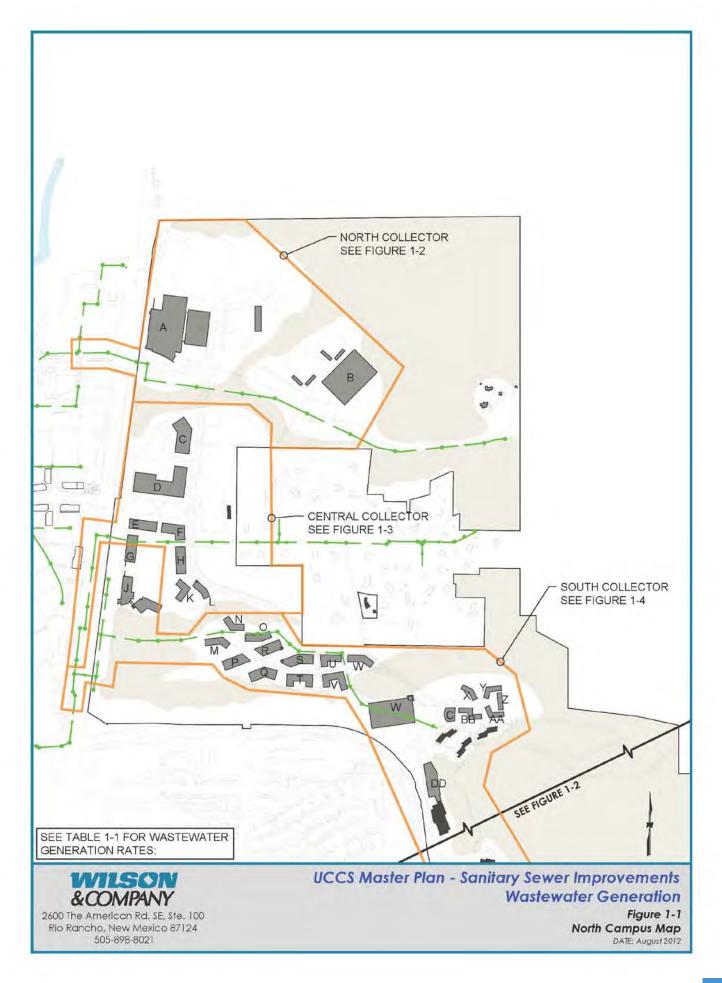
- 1. Construct N601, N602, & N603 to serve buildings C, D, E & F. tie into E305. Construction Cost \$130,000.00.
- 2. Realign north collector to follow roadway. Construct N701 through N707 to serve stadium/ Natatorium (A) and field house (B). Connect to E402. Construction Cost \$144,000.00.

c. Phase 3 Improvements

1. Connect building G & I to pipe segments N401 & N402, as constructed und phase 1. Upsize existing Sanitary Sewer Pipes E111, E112, E113 & E114. Construction Cost \$122,000.00.

d. Full Build-out

- 1. Construct N501 through N503 to serve buildings H, K & L. tie into E303. Construction Cost \$63,000.00.
- 2. Upsize pipe segments E107 through E110 to accept flows from N301 through N304. Cost \$103,000.00.
- 3. Construct N301 through N304 with Pedestrian walkway to serve buildings M, N, O, P, Q, R, S, T, U, & V. Connect to E107. Construction Cost \$90,000.00.

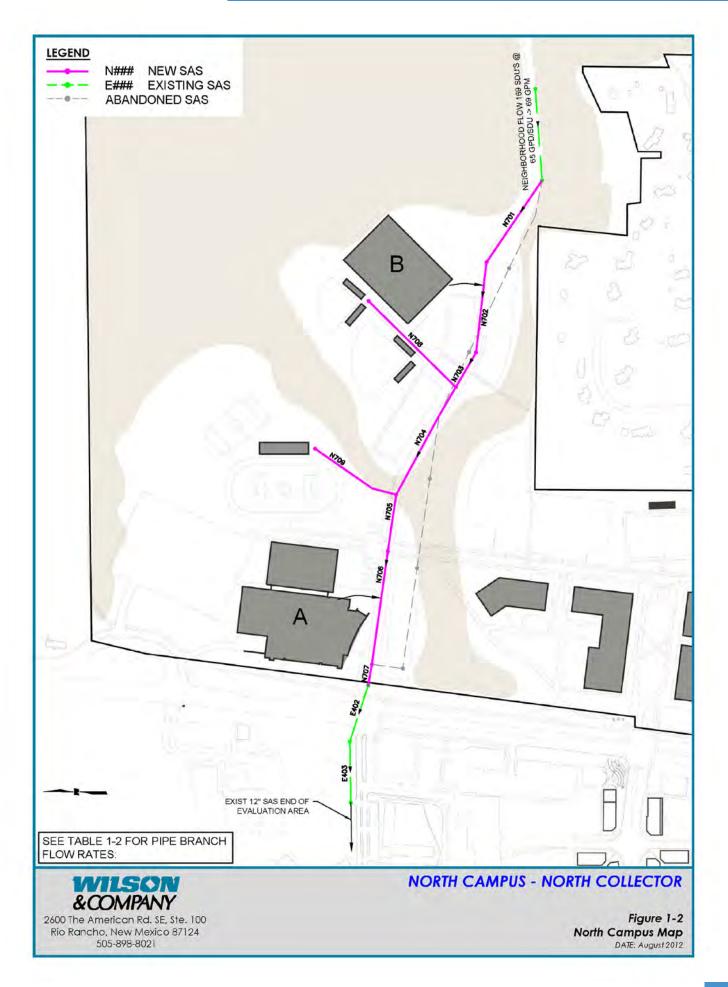

2. Core Campus:

- a. Phase 1 Improvements: None
- b. Phase 2 Improvements Option A (figure 2-2):
- i. Construct N801 through N808 to serve buildings G, H, K, N, O, Q, & T. Connect to E401 on east edge of property. Cut and abandon pipe 701. Rerouting flows from northern buildings in area will allow Buildings F, J, L, & M to be connected to the existing sanitary sewer. Construction cost \$225,000.00.
- ii. Construct N 901 through N903 to serve building P, R, & S. Connect to E501 on south side of Austin Bluffs Parkway. Cost \$87,000.00.
- iii. Construct Lift station and forcemain east of and adjacent to building C. Route forcemain up to the end manhole of N101. Construct N1001 to serve buildings D & E. Flow will go to the North Campus South Collector. Cost \$260,000.00.
 - iv. Option A total Cost Estimate: \$572,000.00

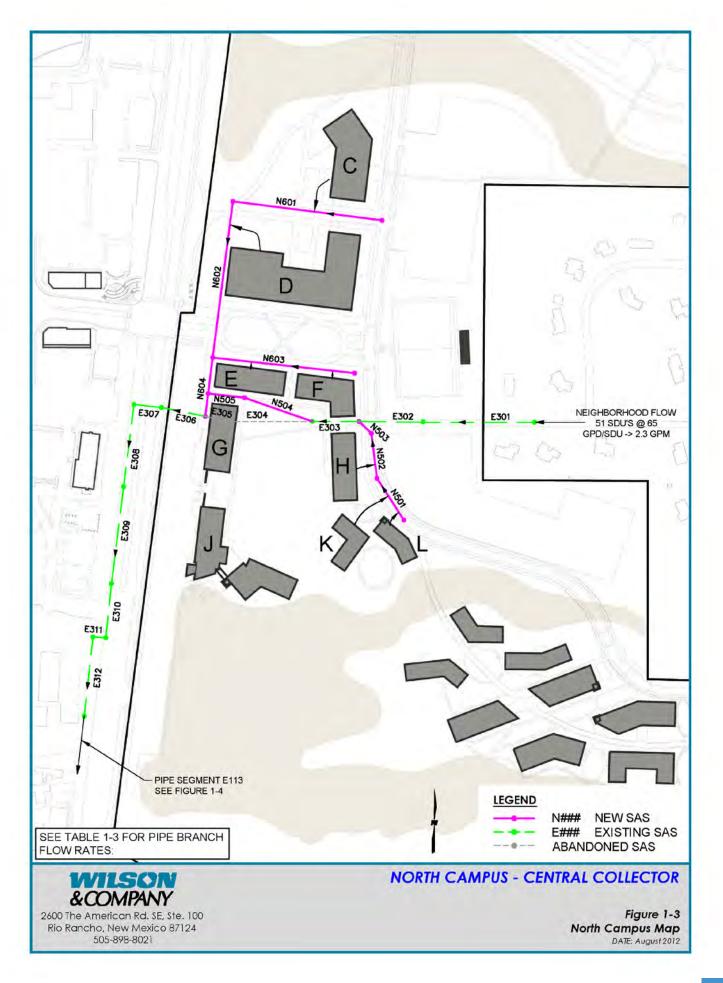
c. Phase 2 Improvements - Option B (figure 2-3):

- i. Increase diameter of all necessary existing sanitary sewer pipes including branches E801 through E805 and downstream; E707 and downstream. Limits of increasing pipe diameter cannot be ascertained without reviewing hydraulic analysis of the existing system. Presumably, since the existing 8-inch is collecting wastewater from the neighborhood downstream of the campus, the total length of sanitary sewer to be increased is 7,230-feet. Using pipe bursting techniques to minimize the construction cost, the estimated cost at \$125 per foot is: \$925,000.00.
- ii. Construct N801, N803 through N809, and N901 through N903 to serve buildings G, O, P, Q, R, and S. Connect to E501 on east edge of property. Construction cost \$200,000.00.
 - iii. Option B total Cost Estimate: \$835,000.00.

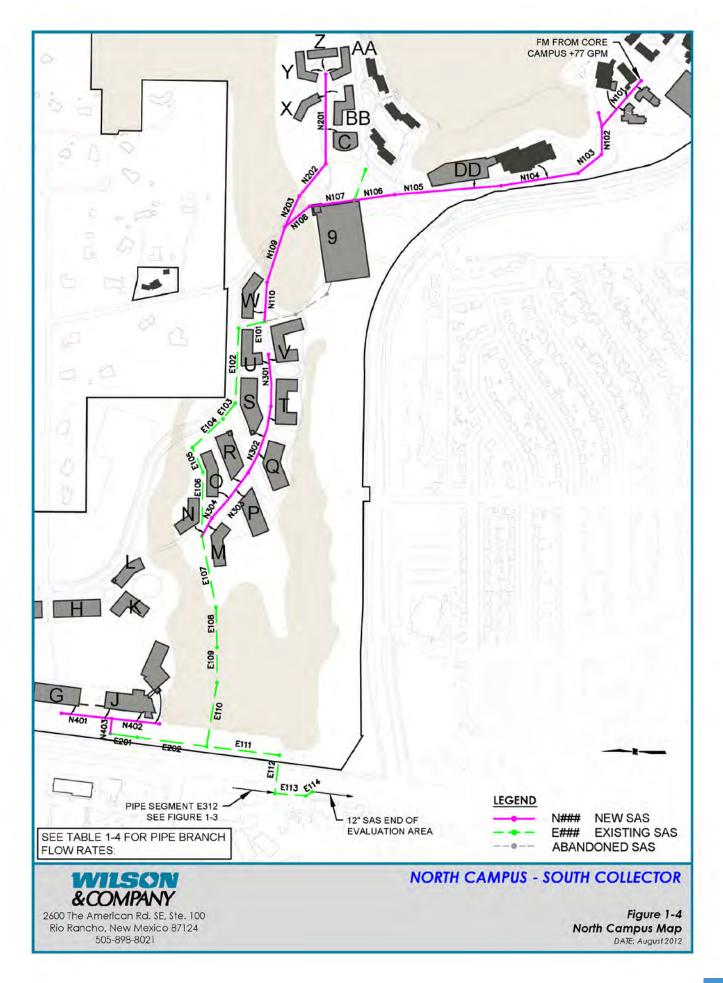
Note: All evaluation of existing sanitary sewer size and capacity is based upon available information. A comprehensive availability study in accordance with Colorado Springs Utility analysis requirements must be completed to verify downstream conditions and needs for improvements at the time of design.


University of Colorado - Colorado Springs North Campus Wastewater Generation Flow Rate Calculations

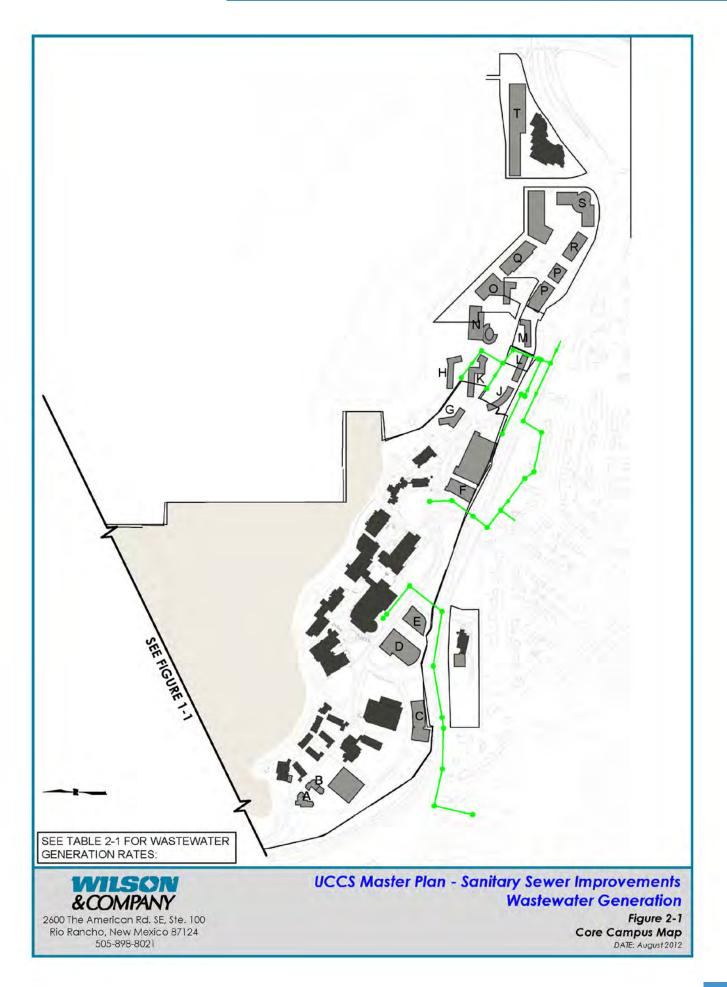
BLDG ID	USE	FOOTPRINT	LEVELS	TOTAL AREA	SF PER AN OCCUPANT		WASTEWATER GENERATION PER FACILITY	DA	ILY WAST	EWATER FLO	ws
UNITLESS		GSF	EA.			EA.	GAL/PER/D	GPD	GPM	PEAKING FACTOR	Q _{PEAK} GPM
Α	Stadium	132000	2	264000	4	5200	8	41,600	29	3	87
	Natatorium	64000	1	64000	25.5	2510	12	30,118	21	3	63
В	Fieldhouse	126000	1	126000	50	2520	30	75,600	53	3	158
C	Visual Arts	160000	2	160000	100	1600	16	25,600	18	3	53
D	Performing Arts	145000	2	145000	80	1809	16	28,940	20	3	60
E	Research	27000	4	108000	100	1080	16	17,280	12	3	36
F	Research	27000	4	108000	100	1080	16	17,280	12	3	36
G	Research	21600	4	86400	100	864	16	13,824	10	3	29
Н	Research	37800	4	151200	100	1512	16	24,192	17	3	50
)	Research	23000	4	92000	100	920	16	14,720	10	3	31
K	Residential	13500	4	54000	- 8	129	125	16,125	11	3	34
L	Residential	10700	4	42800		102	125	12,750	9	3	27
M	Residential	12000	4	48000		11	125	1,375	1	3	3
N	Residential	10500	4	42000	~ ~	100	125	12,500	9	3	26
0	Residential	11400	4	45600	-	109	125	13,625	9	3	28
Р	Academic	20500	4	82000	100	820	16	13,120	9	3	27
Q	Academic	23000	4	92000	100	920	16	14,720	10	3	31
R	Academic	15400	4	61600	100	616	16	9,856	7	3	21
S	Academic	21300	4	85200	100	852	125	106,500	74	3	222
T	Residential	22000	4	88000		235	125	29,375	20	3	61
U	Residential	15500	4	62000	4	165	125	20,625	14	3	43
٧	Residential	23000	4	92000		245	125	30,625	21	3	64
W	Residential	15500	4	62000		165	125	20,625	14	3	43
X	Residential	9000	4	36000	-	111	65	7,215	5	3	15
Υ	Residential	10000	4	40000	+	123	65	7,995	6	3	17
Z	Residential	8000	4	32000	×	98	65	6,370	4	3	13
AA	Residential	10000	4	40000	7	121	65	7,865	5	3	16
BB	Residential	13800	4	55200	+	170	65	11,050	8	3	23
CC	Dining	14000	2	28000	15	1867	10	18,667	13	3	39
DD	Recreation	60000	3	180000	50	3600	30	108,000	75	3	225


2600 The American Rd. SE, Ste. 100 Rio Rancho, New Mexico 87124 505-898-8021 UCCS Master Plan - Sanitary Sewer Improvements Wastewater Generation

> Table 1-1 North Campus DATE: August 2012

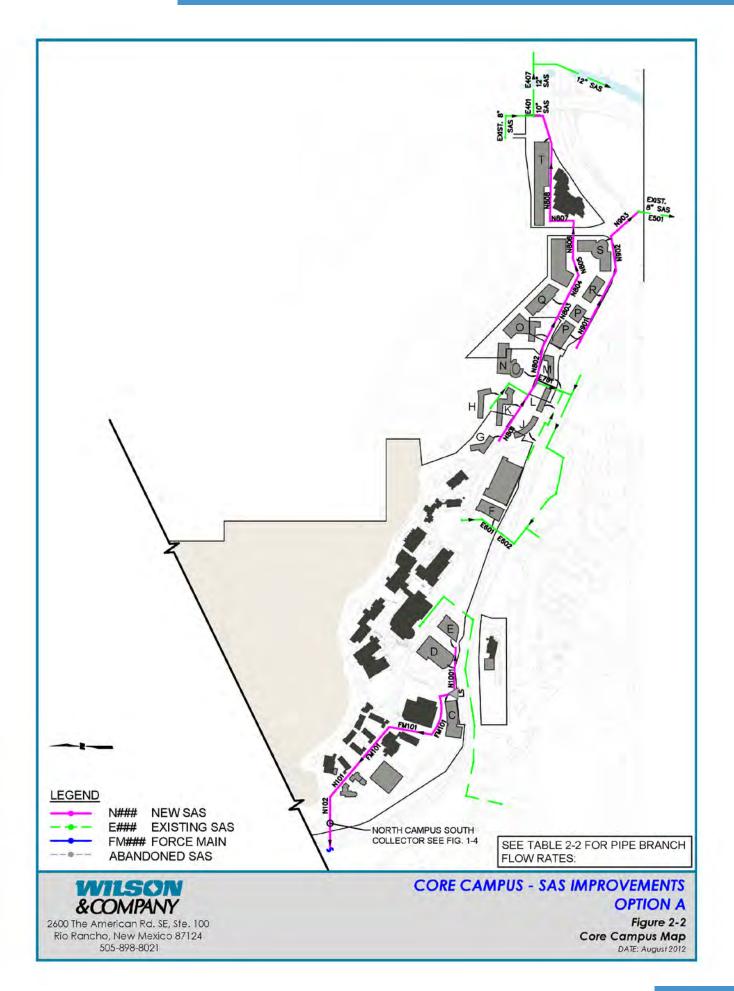

			Pi	pe Branch N700			
PIPE SEGMENT	SLOPE	DIA	FLOW IN	MAX CALC CAPACITY	% FULL	UPSTREAM SEGMENT	DOWNSTREAM SEGMENT
I LAL	%	IN	GPM	GPM			- X
N701	2.66	12	69	2801	2.46%	E401	N 702
N702	2.66	12	227	2801	8.10%	N701	N 703
N703	2.66	12	227	2801	8.10%	N702	N 704
N704	2.66	12	237	2801	8.46%	N703	N 705
N705	2.66	12	247	2801	8.82%	N704	N 706
N706	2.66	12	397	2801	14.17%	N705	N 707
N707	0.66	12	397	1395	28.46%	N706	E402
N708	0.66	8	10	472	2.10%		N 704
N709	0.66	8	10	472	2.10%	-4:-	N 705
			Pipe Brai	nch E200 - Existing	g SAS		
PIPE SEGMENT	SLOPE	DIA	FLOW IN	MAX CALC CAPACITY	% FULL	UPSTREAM SEGMENT	DOWNSTREAM SEGMENT
	%	IN	GPM	GPM	-		
E401	0.66	12	69	1395	4.95%	<u>z</u>	N 701
E402	0.66	12	397	1395	28.46%	N707	E403
E403	0.66	12	397	1395	28.46%	E402	4

			Pi	pe Branch N500			
PIPE SEGMENT	SLOPE	DIA	FLOW IN	MAX CALC CAPACITY	% FULL	UPSTREAM SEGMENT	DOWNSTREAM SEGMENT
-	%	IN	GPM	GPM	-	· -	
N 501	0.66	8	61	472	12.92%	2 - 2	N502
N 502	0.66	8	61	472	12.92%	N501	N503
N 503	0.66	8	61	472	12.92%	N502	E303
N 504	2.66	8	78	948	8.23%	E303	N505
N 505	0.66	8	78	472	16.53%	N504	N604
			Pi	pe Branch N600			
PIPE SEGMENT	SLOPE	DIA	FLOW IN	MAX CALC CAPACITY	% FULL	UPSTREAM SEGMENT	DOWNSTREAM SEGMENT
-	%	IN	GPM	GPM	-		1
N 601	2.66	8	53	948	5.59%		N602
N 602	1.66	8	113	948	11.92%	N601	N603
N 603	2.66	8	72	948	7.59%	N602	N604
N 604	2.66	8	263	948	27.74%	N603	E306
			Pipe Bran	nch E300 - Existing	g SAS		
PIPE SEGMENT	SLOPE	DIA	FLOW IN	MAX CALC CAPACITY	% FULL	UPSTREAM SEGMENT	DOWNSTREAM SEGMENT
	%	IN	GPM	GPM	1,-0,		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
E301	2.66	8	7	948	0.74%	#REF!	E302
E302	2.66	8	7	948	0.74%	E301	E303
E303	2.66	8	78	948	8.23%	E302	E304
E304	2.66	8	78	948	8.23%	E303	E305
E305	0.66	8	78	472	16.53%	E304	E306
E306	2.66	8	263	948	27.74%	E305	E307
E307	0.66	8	263	472	55.72%	E306	E308
E308	1.66	8	263	749	35.11%	E307	E309
E309	1.66	8	263	749	35.11%	E308	E310
E310	1.66	8	263	749	35.11%	E309	E311
E311	0.66	8	263	472	55.72%	E310	E312
E312	1.66	8	263	749	35.11%	E311	E113



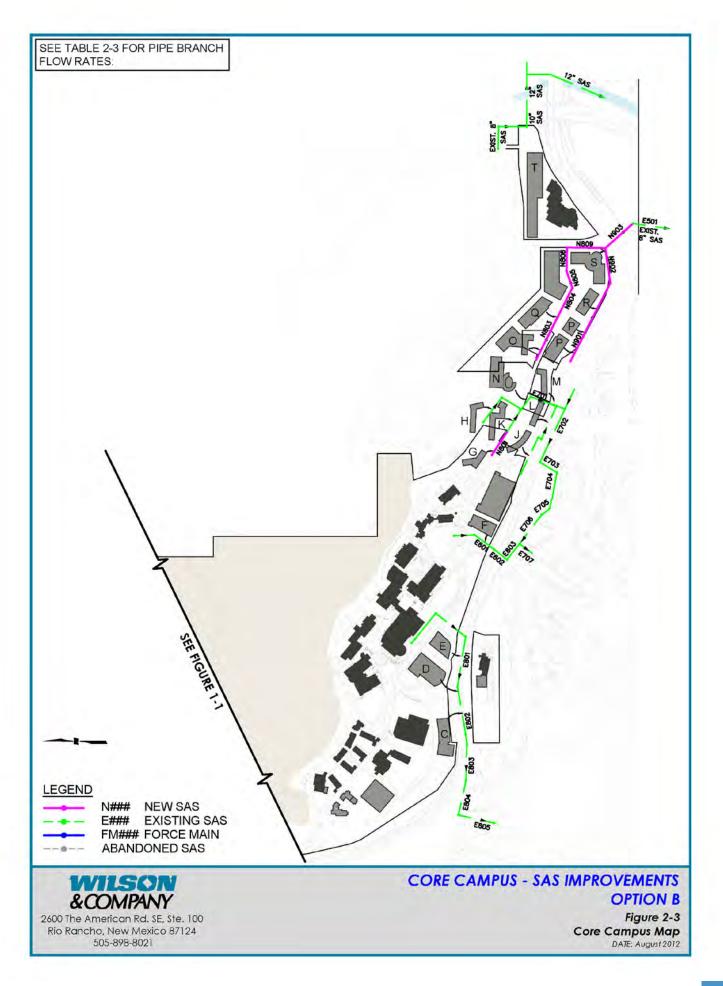
	-	_	Pi	pe Branch N100		T was a second	Tarana
PIPE SEGMENT	SLOPE	DIA	FLOW IN	MAX CALC CAPACITY	% FULL	SEGMENT	DOWNSTREAM SEGMENT
	%	IN	GPM	GPM			
N101	0.66	8	103	472	21.82%	CORE FM	N102
N102	3.16	8	103	1034	9.96%	N101	N103
N103	0.66	8	103	472	21.82%	N102	N104
N104	0.66	8	103	472	21.82%	N103	N105
N105	0.66	8	328	472	69.49%	N104	N106
N106	1.66	8	328	749	43.79%	N105	N107
N107	0.66	10	385	875	44.00%	N106	N108
N108	0.66	10	385	857	44.92%	N107	N109
N109	3	8	565	1007	56.11%	N108	N110
N110	3.16	8	565	1034	54.64%	N109	E101
			Pi	pe Branch N200			
				MAX		UPSTREAM	DOWNSTREAM
PIPE SEGMENT	SLOPE	DIA	FLOW IN		% FULL	SEGMENT	SEGMENT
	%	IN	GPM	GPM	-	2	-
N201	2.66	8	180	948	18.99%	-	N202
N201		8	180	472		1.47.60	7 . 17
N202 N203	0.66 2.66	8	180	948	38.14% 18.99%	N201 N202	N203 N109
NZU3	2.00	0		The State of the S	10.3370	IVZUZ	14109
			Pi	pe Branch N300		Towns and the same	Î-e-surent sant and
	bar out			MAX		UPSTREAM	DOWNSTREAM
PIPE SEGMENT	SLOPE	DIA	FLOW IN	CALC CAPACITY	% FULL	SEGMENT	SEGMENT
•	%	IN	GPM	GPM	-	-	-
N301	2.66	8	107	948	11.29%		N302
N302	2.66	8	227.4	948	23.99%	N301	N303
N303	2.66	8	275.4	948	29.05%	N302	N304
N304	2.66	8	278.4	948	29.37%	N303	E107
			Di	pe Branch N400			
			1	MAX		UPSTREAM	DOWNSTREAM
PIPE SEGMENT	SLOPE	DIA	FLOW IN	CALC CAPACITY	% FULL	SEGMENT	SEGMENT
(*)	%	IN	GPM	GPM	1.0	-	
N401	2.66	8	29	948	3.06%		N402
N402	0.66	8	41	472	8.69%	N401	N403
N403	0.66	8	70	472	14.83%	N402	E201
			Pipe Bran	nch E100 - Existing	SAS		
The second second				MAX		UPSTREAM	DOWNSTREAM
PIPE SEGMENT	SLOPE	DIA	FLOW IN	CALC CAPACITY	% FULL	SEGMENT	SEGMENT
	%	IN	GPM	GPM	-		
E101	3.16	8	565	1034	54.64%	N110	E102
E102	3.16	8	565	1034	54.64%	E101	E103
E103	2.66	8	565	948	59.60%	E102	E104
E104	2.66	8	565	948	59.60%	E103	E105
E105	2.66	8	565	948	59.60%	E104	E106
E106	3.05	8	565	1015	55.67%	E105	E107
E107	2.66	10	888.4	1721	51.62%	E106	E108
E108	0.66	12	888.4	1395	63.68%	E107	E109
E109	2.66	10	888.4	1721	51.62%	E108	E110
E109	2.66	10	888.4	1721	51.62%	E109	E110
E110		12	958.4	1395	68.70%		E112
	0.66	10			55.69%	E110	1 2 9 5
E112	2.66		958.4	1721		E111	E113
E113	1.21	12	1277.4	1889	67.62%	E112	E114
E114	1.21	12	1277.4	1889	67.62%	E113	12" SAS
			Pipe Bran	nch E200 - Existing	g SAS		γ
	3325	3.55		MAX	X	UPSTREAM	DOWNSTREAM
ELECTRICAL TO		DI 0	LELOWAL INT	CALC CAPACITY	% FULL	SEGMENT	SEGMENT
PIPE SEGMENT	SLOPE	DIA	FLOW IN	CALC CAPACITI	70 FULL	SEGIVIEIVI	SCONIENT
PIPE SEGMENT -	SLOPE %	IN	GPM	GPM		- SEGIVIENT	-
THE CHILD STATE OF THE COLUMN					7.38%	- N403	E202

NORTH CAMPUS - SOUTH COLLECTOR



University of Colorado - Colorado Springs Core Campus Wastewater Generation Flow Rate Calculations

BLDG ID	USE	USE FOOTPRINT	LEVELS	TOTAL AREA	SF PER AN OCCUPANT SF/EA	CALC. OCCUPANTS	WASTEWATER GENERATION PER FACILITY	DAILY WASTEWATER FLOWS			
UNITLESS			EA.			EA.	GAL/PER/D	GPD	GPM	PEAKING FACTOR	Q _{PEAK} GPM
Α	Residential		4	33,390	¥	106	65	6,890	5	3	14
В	Residential		4	27,090	-	86	65	5,590	4	3	12
C	Academic Office	29,300	4	117,200	100	1172	16	18,752	13	3	39
D	Academic	38,800	2	77,600	100	776	16	12,416	9	3	26
E	Academic	18,300	2	36,600	100	366	16	5,856	4	3	12
F	Academic	15,000	4	60,000	100	600	16	9,600	7	3	20
G	Residential	11,000	5	55,000		169	65	10,985	8	3	23
Н	Residential	12,000	4	48,000	-	148	65	9,620	7	3	20
J	Residential	10,700	4	42,800	-	132	65	8,580	6	3	18
K	Residential	15,700	4	62,800	-	193	65	12,545	9	3	26
L	Residential	9,000	4	36,000	-	111	65	7,215	5	3	15
М	Residential	10,100	4	40,400	- Y-	124	65	8,060	6	3	17
N	Dining/Residential	35,000	2	70,000	15	1680	65	109,200	76	3	76
0	Academic	33,400	4	133,600	100	1336	16	21,376	15	3	45
Р	Academic	22,000	4	88,000	100	880	16	14,080	10	3	29
Р	Academic	10,000	4	40,000	100	400	16	6,400	4	3	13
Q	Academic	27,700	4	110,800	100	1108	16	17,728	12	3	37
R	Academic	17,500	4	70,000	100	700	16	11,200	8	3	23
S	Academic	39,000	4	156,000	100	1560	16	24,960	17	3	52
Ī	Academic	24,600	4	98,400	100	984	16	15,744	11	3	33


UCCS Master Plan - Sanitary Sewer Improvements Wastewater Generation

			P	ipe Branch N800			
PIPE SEGMENT	SLOPE	DIA	NEW FLOW IN	MAX CALC CAPACITY	% FULL	UPSTREAM SEGMENT	DOWNSTREAM SEGMENT
	%	IN	GPM	GPM	-		4
N801	3	8	69	1007	6.85%		N802
N802	0.66	8	145	472	30.72%	N801	N803
N803	0.8	8	190	520	36.54%	N802	N804
N804	3	8	227	1007	22.54%	N803	N805
N805	0.66	8	227	472	48.09%	N804	N806
N806	3	8	227	1007	22.54%	N805	N807
N807	0.66	8	227	472	48.09%	N806	N808
N808	1.66	8	260	749	34.71%	N807	EXIST 10" SAS
			P	ipe Branch N900			
			NEW	MAX		UPSTREAM	DOWNSTREAM
PIPE SEGMENT	SLOPE	DIA	FLOW IN	CALC CAPACITY	% FULL	SEGMENT	SEGMENT
- u - u	%	IN	GPM	GPM			
N901	1.66	8	65	749	8.68%	-	N902
N902	1.66	8	117	749	15.62%	N901	N903
N903	1.66	8	117	749	15.62%	N902	EXIST 8" SAS
			P	pe Branch N1000	/-	Y	
			NEW	MAX		UPSTREAM	DOWNSTREAM
PIPE SEGMENT	SLOPE	DIA	FLOW IN	CALC CAPACITY	% FULL	SEGMENT	SEGMENT
-	%	IN	GPM	GPM	4		7
N1001	2.66	8	107	948	11.29%		FMTO N. CAMP
			Pine Bra	nch E500 - Existin	οσ SΔS		
			NEW	MAX	ig ono	UPSTREAM	DOWNSTREAM
PIPE SEGMENT	SLOPE	DIA	FLOW IN	CALC CAPACITY	% FULL	SEGMENT	SEGMENT
FIFE SEGIVICIAL	%	IN	GPM	GPM	76 FOLL	SEGIVIEIVI	SEGIVILIA
E501	0,66	8	117	472	24.79%		EXIST 8" SAS
LJUI	0.00	0					LAIST 6 SAS
			NEW NEW	nch E600 - Existir	ig SAS	UPSTREAM	DOWNSTREAM
PIPE SEGMENT	CLODE	DIA	FLOW IN	CALC CAPACITY	% FULL	SEGMENT	SEGMENT
PIPE SEGIVIENT	SLOPE %	DIA			% FULL	SEGIVIEIVI	SEGIVICIVI
-		IN	GPM	GPM 1024	- 	-	-
E601	3.16	8	565	1034	54.64%		E602
E602	3,16	8	565	1034	54.64%	E601	EXIST 8" SAS
				nch E700 - Existin	ng SAS	T management	Lagrania
	1000	230	NEW	MAX	2,2000	UPSTREAM	DOWNSTREAM
PIPE SEGMENT	SLOPE	DIA	FLOW IN	CALC CAPACITY	% FULL	SEGMENT	SEGMENT
4.10	%	IN	GPM	GPM	-	- C-0*	-
E701	0.66	8	50	472	10.59%		EXIST 8" SAS

CORE CAMPUS - SAS IMPROVEMENTS
OPTION A

PIPE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT				Pipe Branch N801		LIDCEDEANA	DOMINICANTAR
N801 3	MENT S	SLOPE DI	A FLOW IN	MAX CALC CAPACITY	% FULL	UPSTREAM SEGMENT	DOWNSTREAM SEGMENT
Pipe Branch N803		% 11	GPM	GPM			
NEW MAX SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT NEW NEW SEGMENT NEW NEW SEGMENT NEW NEW SEGMENT NEW N	01	3 8	195	1007	19.36%	1	E701
NEW MAX SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT NEW NEW SEGMENT NEW NEW SEGMENT NEW NEW SEGMENT NEW N		*	1	Pipe Branch N803			
NB03						UPSTREAM	DOWNSTREAM
N803 0.8	MENT S	SLOPE DI	A FLOW IN	CALC CAPACITY	% FULL	SEGMENT	SEGMENT
N804 3		% 11	GPM	GPM	4		
N805	03	0.8	45	520	8.65%		N804
N806 3	04	3 8	82	1007	8.14%	N803	N805
N809 0.66 8 82 472 17.37% N806	05	0.66 8	82	472	17.37%	N804	N806
Pipe Branch N900 Stope DIA FLOW IN CALC CAPACITY SEGMENT SEGME	06	3 8	82	1007	8.14%	N805	N809
PIPE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT N901 1.66 8 65 749 8.68% -	09	0.66	82	472	17.37%	N806	N903
PIPE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT N901 1.66 8 65 749 8.68% -			10	Pipe Branch N900			
N901 1.66						UPSTREAM	DOWNSTREAM
N901 1.66	MENT S	SLOPE DI	A FLOW IN	CALC CAPACITY	% FULL	SEGMENT	SEGMENT
N902 1.66		% 11	GPM	GPM	7 4 7 7		
N902 1.66	01	1.66 8			8.68%		N902
Pipe Branch E500 - Existing SAS EST MAX UPSTREAM DICE						N901	N903
PIPE SEGMENT SLOPE DIA						1	EXIST 8" SAS
PIPE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT			Dina Br	anch ESOO - Evictin	242 24		
PIPE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT					ig sas	HIPSTREAM	DOWNSTREAM
FIDE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY SEGMENT CALC CAPACITY CALC CA	EMENT S	SIODE DI	6 S.	1,	% EIIII		SEGMENT
Pipe Branch E600 - Existing SAS EST MAX			or and the second		70 FULL		SEGWIENT
Pipe Branch E600 - Existing SAS Lest MAX SEGMENT					24 709/	1	EXIST 8" SAS
PIPE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT)1	0.00				-	EXISTO SAS
PIPE SEGMENT SLOPE					ng SAS		
- % IN GPM GPM E601 3.16 8 64 472 13.56% EXIST CAMPUS E602 0.66 8 64 472 13.56% E601 E603 0.66 8 64 472 13.56% E602 Pipe Branch E700 - Existing SAS PIPE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT - % IN GPM GPM E701 0.66 8 245 472 51.91% N801 E702 0.66 8 245 472 51.91% E701 E703 0.66 8 245 472 51.91% E701 E704 0.66 8 245 472 51.91% E702 E705 0.66 8 245 472 51.91% E703 E705 0.66 8 245 472 51.91% E703 E706 0.66 8 245 472 51.91% E703 E707 0.66 8 245 472 51.91% E706 E708 0.66 8 245 472 51.91% E706 E709 0.66 8 245 472 51.91% E706 E700 0.66 8 245 472 51.91% E705 E700 0.66 8 245 472 51.91% E706 E700 0.66 8 245 472 51.91% E705 E700 0.66 8 245 472 51.91% E706 E700 0.66 8 245 472 51.91% E7		CLODE D	o. 10. 2001 a		0/ =1111		DOWNSTREAM
E601 3.16		7.77		- 5-0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	% FULL	SEGIVIENT	SEGMENT
B602 0.66			7	75-15-1	42.500/	EVICE CANADUC	-
Pipe Branch E700 - Existing SAS EST MAX UPSTREAM DIVENTIFY DIVENTI		2 77			7 5 5 1 5 1		E602
Pipe Branch E700 - Existing SAS EST MAX UPSTREAM DISTREAM DISTREA							EXIST 8" SAS EXIST 8" SAS
PIPE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT E801 0.66 8 264 472 55.93% EXIST CAMPUS EXIST CAMPUS	J.5	0.00			1.12.2	EOUZ	EVISTO 292
PIPE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT					ng SAS	T	W. W. S. J. S. W. S.
- % IN GPM GPM	Total 2	Anna Ca	ran a facilità de la compansión de la comp		200.00		DÓWNSTREAM
E701 0.66 8 245 472 51.91% N801 E702 0.66 8 245 472 51.91% E701 E703 0.66 8 245 472 51.91% E702 E704 0.66 8 245 472 51.91% E703 E705 0.66 8 245 472 51.91% E704 E706 0.66 8 245 472 51.91% E705 1 E707 0.66 8 309 472 65.47% E706 1 Pipe Branch E800 - Existing SAS EST MAX UPSTREAM DIA FLOW IN CALC CAPACITY % FULL SEGMENT - % IN GPM - - E801 0.66 8 264 472 55.93% EXIST CAMPUS	IMENT S	- VA:	200	a surface of the surf	% FULL	SEGMENT	SEGMENT
E702 0.66 8 245 472 51.91% E701 E703 0.66 8 245 472 51.91% E702 E704 0.66 8 245 472 51.91% E703 E705 0.66 8 245 472 51.91% E704 E706 0.66 8 245 472 51.91% E705 1 E707 0.66 8 309 472 65.47% E706 1 Pipe Branch E800 - Existing SAS EST MAX UPSTREAM DIA DIA FLOW IN CALC CAPACITY % FULL SEGMENT - % IN GPM GPM - E801 0.66 8 264 472 55.93% EXIST CAMPUS							-
E703 0.66 8 245 472 51.91% E702 E704 0.66 8 245 472 51.91% E703 E705 0.66 8 245 472 51.91% E704 E706 0.66 8 245 472 51.91% E705 1 E707 0.66 8 309 472 65.47% E706 1 Pipe Branch E800 - Existing SAS Pipe SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT - % IN GPM - - - E801 0.66 8 264 472 55.93% EXIST CAMPUS			-		45,404		E702
E704 0.66 8 245 472 51.91% E703 E705 0.66 8 245 472 51.91% E704 E706 0.66 8 245 472 51.91% E705 1 E707 0.66 8 309 472 65.47% E706 1 Pipe Branch E800 - Existing SAS EST MAX UPSTREAM DOWN PIPE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT - % IN GPM - - - E801 0.66 8 264 472 55.93% EXIST CAMPUS					A 5 1 1 1 4 5		E703
E705 0.66 8 245 472 51.91% E704 E706 0.66 8 245 472 51.91% E705 1 E707 0.66 8 309 472 65.47% E706 1 E708		24 700				1	E704
E706 0.66 8 245 472 51.91% E705 1 E707 0.66 8 309 472 65.47% E706 1 Fipe Branch E800 - Existing SAS							E705
Pipe Branch E800 - Existing SAS				1			E706
Pipe Branch E800 - Existing SAS					20000 CONTROL	90.0000	EXIST 8" SAS
EST MAX UPSTREAM DO	11	U.00			The state of the s	E/U0	EXIST 8" SAS
PIPE SEGMENT SLOPE DIA FLOW IN CALC CAPACITY % FULL SEGMENT - % IN GPM - - E801 0.66 8 264 472 55.93% EXIST CAMPUS					ng SAS	Talestan 22	
- % IN GPM GPM E801 0.66 8 264 472 55.93% EXIST CAMPUS	3.07.07 E	ALA IV	A STATE OF THE PARTY OF THE PAR	The second secon	0.555		DOWNSTREAM
E801 0.66 8 264 472 55.93% EXIST CAMPUS	-00-27-0-0-0					SEGMENT	SEGMENT
			The state of the s		To Alexandra	•	9
E802 0.66 8 341 472 72.25% F801						- 4-54	E702
				472	72.25%	E801	E703
E803 0.66 10 418 857 48.77% E802					1 1 1 1 1 1 1 1 1 1	11	E704
E804 0.66 10 495 857 57.76% E803					-6/0 /64	1	E705
E805 0.66 10 572 857 66.74% E804 E806 0.66 10 649 857 75.73% E805	400	31322					E706 EXIST 8" SAS

CORE CAMPUS - SAS IMPROVEMENTS
OPTION B

Appendix F Water System Phasing and Cost Evaluation

General Analysis: Water system demands were determined for each building based upon the gross square footage, and building usage. These system demands were then compared to the fire flow requirement for each building. Fire flows were determined based upon the gross square footage, building construction type as defined in Chapter 6 of the International Building Code, and Table B105.1 - Minimum Required Fire-Flow and Flow Duration for Buildings of the International Building Code. Minimum required fire-flows were reduced by 50 percent under the assumption that all building will be equipped with an approved automatic sprinkler system.

Based upon comparison of the building demands for each loop to the minimum required fire flow, the minimum required fire-flow governed in selection of the pipe size. Storage requirements for flow duration of fire flow were not evaluated, and should be considered further in the hydraulic analysis and availability studies during design. Other improvements to the Colorado Springs Utility water distribution system may be necessary to provide sufficient flow to the University of Colorado Colorado Springs campus. These improvements would be identified during the hydraulic analysis and water availability studies during design.

A summary of recommended improvements are as follows:

1. North Campus

a. Phase 1 Improvements:

i. At the pedestrian spine a 14-inch waterline has been identified extending south along the pedestrian spine, around the new parking garage, and connecting to the existing infrastructure south of the existing recreation center (Building ID DD in Figure 3-1.) 3,430-ft 14-inch water main. Construction Cost: \$370,440.00

b. Phase 2 Improvements

- i. A 16-inch main has been identified extending from the intersection of North Nevada and North Campus Heights, east past the future Stadium. A 14-inch loop should then be extended south from the 16-inch road to connect with the 14-inch main constructed under phase 2 (see figure 3-1.) 800-ft of 16-inch water main, 2,580-ft of 14-inch water main. Construction Cost \$365.000.00
- ii. A 10-inch loop has been identified to serve buildings X, Y, Z, AA, BB, & CC. 1,200-ft. Construction Cost: \$115,000.00

c. Phase 3 Improvements

i. No improvements have been identified on the North Campus in Phase 3. Hydraulic analysis and water availability studies during design will determine adequacy of supply and fire protection.

d. Phase 4 Improvements

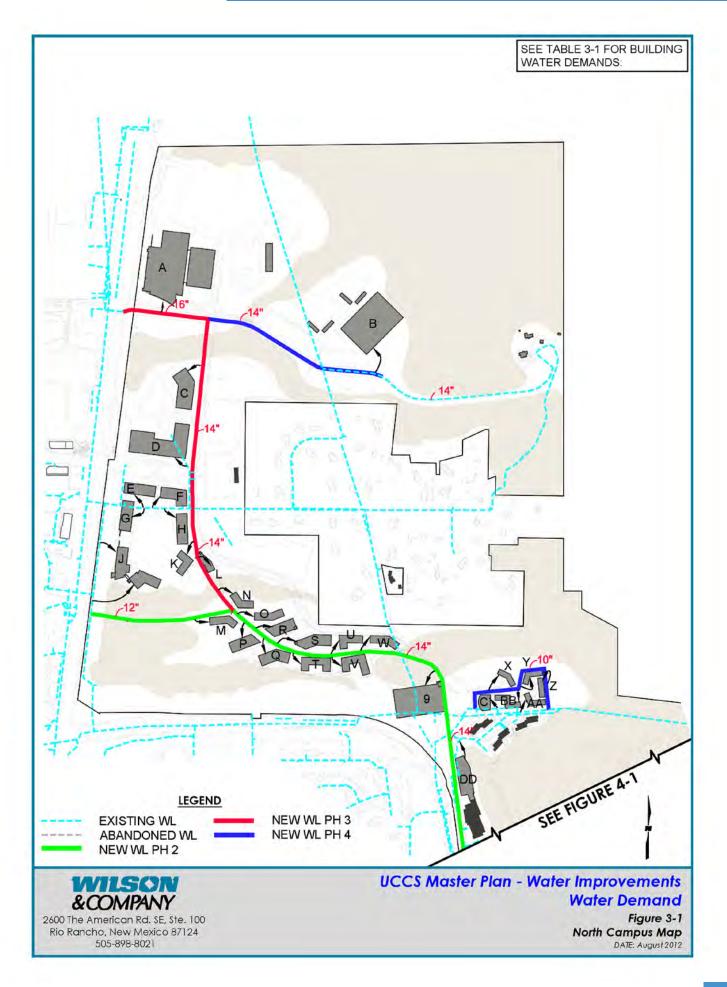
- i. A 12-inch has been identified to replace the existing 8-inch extending from North Nevada to the pedestrian spine (see figure 3-1.) 1,210-ft of 12-inch water main. Construction Cost: \$160,200.00
- ii. A 14-inch main has been identified to extend east along North Campus Heights past the Field House where it will connect to the existing system. 1,588-ft. Construction Cost: \$170,000.00

a. Phase 1 Improvements:

i. No improvements have been identified on the Core Campus in Phase 1. Hydraulic analysis and water availability studies during design will determine adequacy of supply and fire protection.

b. Phase 2 Improvements:

i. A 12-inch loop has been identified extending east as shown in figure 4-1 to serve buildings N, O, P, Q, R, & S. this loop should connect to the existing system at Austin Bluffs Parkway and Cragwood Road. 3,040-ft of 12-inch water main. Construction Cost: \$292,000.00

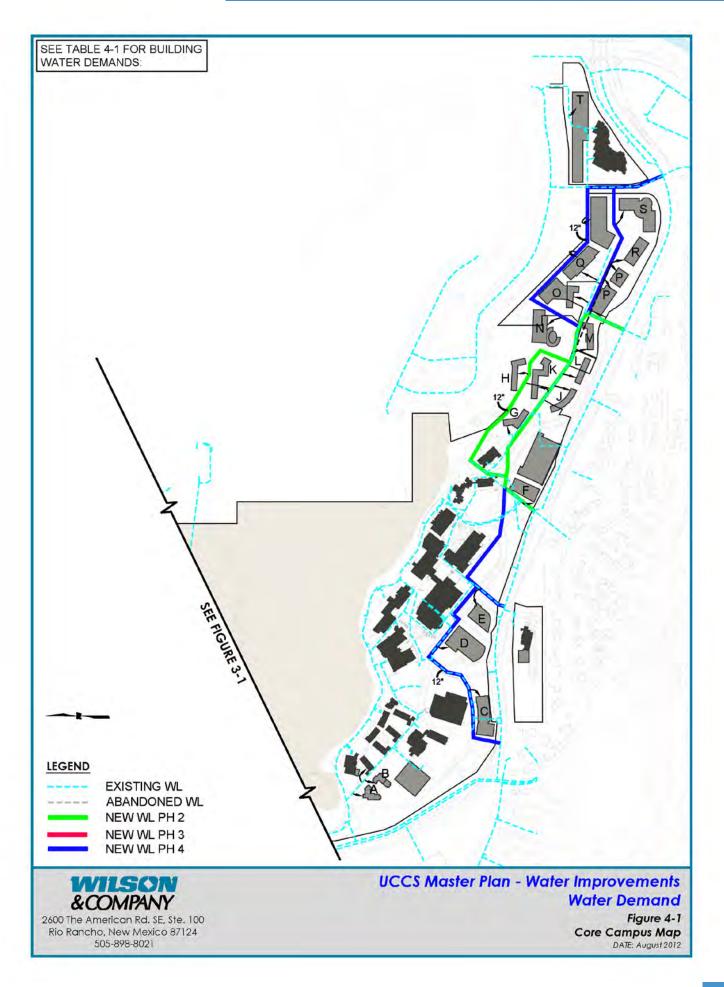

c. Phase 3 Improvements:

i. No improvements have been identified on the Core Campus in Phase 3. Hydraulic analysis and water availability studies during design will determine adequacy of supply and fire protection.

d. Phase 4 Improvements:

- i. A 12-inch loop has been identified to serve buildings F, G, H, K, L, & M. connecting to the system at Austin Bluffs Parkway & Meadow Lane. and extending southeast along the transit spine to the next roadway access off of Austin Bluffs Parkway. A secondary loop has been identified around the north side of Buildings G & J (see figure 4-1). 3,660-ft if 12-inch water main. Construction Cost: \$352.000.00
- ii. A 12-inch loop has been identified extending from Meadow Lane east along the transit spine past building D, then southeast past building C to connect to the existing system in Austin Bluffs Parkway (see figure 4-1) 2,840-feet of 12-inch water main. Construction Cost: \$275,000.00

Note: All evaluation of existing sanitary sewer size and capacity is based upon available information. A comprehensive availability study in accordance with Colorado Springs Utility analysis requirements must be completed to verify downstream conditions and needs for improvements at the time of design.



University of Colorado - Colorado Springs North Campus Building Water Demands

BLDG ID	USE	USE FOOTPRINT		TOTAL AREA	DAILY WASTEWATER FLOWS	DAILY WA	TER USE	FIRE FLOW REQUREMENT		
		GSF	GSF	EA.	GSF	Q _{PEAK} GPM	ASSUMED % CONSUMPTIVE USE	ASSUMED WATER DEMAND (GPM)	TYPE IIIA - SPRINKLED (GPM)	
Α	Stadium	132,000	2	264,000	87	30%	124	3000		
	Natatorium	64,000	1	64,000	63	40%	105	1875		
В	Fieldhouse	126,000	1	126,000	158	20%	197	2500		
C	Visual Arts	160,000	2	160,000	53	20%	67	2875		
D	Performing Arts	145,000	2	145,000	60	20%	75	2750		
E	Research	27,000	4	108,000	36	20%	45	2375		
F	Research	27,000	4	108,000	36	20%	45	2375		
G	Research	21,600	4	86,400	29	20%	36	2125		
H	Research	37,800	4	151,200	50	20%	63	2750		
J	Research	23,000	4	92,000	31	20%	38	2125		
K	Residential	13,500	4	54,000	34	30%	48	1625		
L	Residential	10,700	4	42,800	27	30%	38	1500		
M	Residential	12,000	4	48,000	3	30%	4	1625		
N	Residential	10,500	4	42,000	26	30%	37	1500		
0	Residential	11,400	4	45,600	28	30%	41	1500		
Р	Academic	20,500	4	82,000	27	20%	34	2000		
Q	Academic	23,000	4	92,000	31	20%	38	2125		
R	Academic	15,400	4	61,600	21	20%	26	1750		
S	Academic	21,300	4	85,200	222	30%	317	2125		
T	Residential	22,000	4	88,000	61	30%	87	2125		
U	Residential	15,500	4	62,000	43	30%	61	1750		
٧	Residential	23,000	4	92,000	64	30%	91	2125		
W	Residential	15,500	4	62,000	43	30%	61	1750		
Χ	Residential	9,000	4	36,000	15	30%	21	1375		
Υ	Residential	10,000	4	40,000	17	30%	24	1500		
Z	Residential	8,000	4	32,000	13	30%	19	1250		
AA	Residential	10,000	4	40,000	16	30%	23	1500		
BB	Residential	13,800	4	55,200	23	30%	33	1750		
CC	Dining	14,000	2	28,000	39	50%	78	1250		
DD	Recreation	60,000	3	180,000	225	30%	321	3000		

UCCS Master Plan - Water Improvements Water Demand

University of Colorado - Colorado Springs Core Campus Building Water Demands

BLDG ID	USE	USE FOOTPRINT GSF	LEVELS	TOTAL AREA	DAILY WASTEWATER FLOWS	DAI WATER D		FIRE FLOW REQUREMENT TYPE IIIA - SPRINKLED (GPM)	
			EA.		Q _{PEAK} GPM	ASSUMED % CONSUMPTIVE USE	ASSUMED WATER DEMAND (GPM)		
Α	Residential	8,348	4	33,390	14	30%	21	1000	
В	Residential	6,773	4	27,090	12	30%	17	875	
C	Academic Office	29,300	4	117,200	39	20%	49	2500	
D	Academic	38,800	2	77,600	26	20%	32	2000	
E	Academic	18,300	2	36,600	12	20%	15	1500	
F	Academic	15,000	4	60,000	20	20%	25	1875	
G	Residential	11,000	5	55,000	23	30%	33	1750	
Н	Residential	12,000	4	48,000	20	30%	29	1625	
J	Residential	10,700	4	42,800	18	30%	26	1500	
K	Residential	15,700	4	62,800	26	30%	37	1750	
L	Residential	9,000	4	36,000	15	30%	21	1375	
M	Residential	10,100	4	40,400	17	30%	24	1500	
N	Dining/Residential	35,000	2	70,000	76	40%	126	1875	
0	Academic	33,400	4	133,600	45	20%	56	2625	
Р	Academic	22,000	4	88,000	29	20%	37	2125	
Р	Academic	10,000	4	40,000	13	20%	17	1500	
Q	Academic	27,700	4	110,800	37	20%	46	2375	
R	Academic	17,500	4	70,000	23	20%	29	1875	
S	Academic	39,000	4	156,000	52	20%	65	2875	
T	Academic	24,600	4	98,400	33	20%	41	2250	

UCCS Master Plan - Water Improvements Water Demand

Appendix G MEP Master Planning

I. Introduction

This section will discuss the electrical and gas distribution needed to provide working facilities for the future expansion of the university. The current methods of distribution will be discussed, followed by recommended future approaches.

II. Current South Campus Electrical and Gas

Colorado Springs Utilities currently provides electricity and gas to each building. The existing buildings on the UCCS campus are fed from utility-owned transformers with each building metered separately. Colorado Springs Utilities maintains the transformers and service to the transformers. The university is responsible for the electrical service from the meter. The electrical distribution is routed underground from the meter to each building.

Gas lines are utility-owned and maintained to the gas meter for each building. The university maintains the line from the meter. Each building has individual HVAC units with no central plant for the campus.

III.Future Approach

We have had a meeting with a Colorado Springs Utilities representative, Doug Anderson (719-668-3587), and additional meetings are recommended to discuss expansion in more detail.

The future buildings' electrical service on the South Campus and North Campus should be kept consistent with the use of utility-owned transformers. Each building should have its own meter.

We recommend creating a utility corridor through campus. The corridor could run along the same path as the roadway, but not under the roadway. An easement would need to be established for the corridor because the services would be utility-owned. Gas, electric, and telecommunications should all be routed in the utility corridor. The electrical distribution should be in a concrete encased duct bank. A 4-inch telecommunication conduit could be installed on top of the concrete duct bank according to Colorado Springs Utilities' standards. We recommend concrete encasing the telecommunication conduit, so the conduit has a longer life and less maintenance. A shared telecommunication and power concrete duct bank currently costs approximately \$65 per

linear foot. The corridor would be between one mile and one and a half miles long. Manholes should be installed at least every 500 feet with separate manholes for power and telecommunication.

If it is decided to have separate duct banks for power and telecommunications, we recommend an underground duct backbone conduit system to allow installation of university owned fiber optic cable. Concrete encasing the conduit would provide a longer life and less maintenance. A concrete encased duct bank for a telecommunication backbone currently costs approximately \$35 per linear foot.

The electrical rate structure varies by time of day and season. Colorado Springs Utilities offers incentive programs for reducing electrical load during peak time. We recommend installing submeters for the high load applications, such as lighting, HVAC, and computer labs, so it is possible to participate in load shedding methods for reduced electrical peak rates.

Based on phasing plans and associated funding constraints the infrastructure cost of a central steam plant to supply the HVAC equipment for the campus appears to be prohibitive at this time. We recommend using individual HVAC units for each building. The utility-owned gas lines should be located in the recommended utility corridor to run to the buildings throughout the campus. Each building should be metered separately.

Colorado Springs Utilities offers incentive programs for renewable energy generation. A cost benefit analysis should be calculated to determine if adding renewable energy has a short enough payback period to pursue. This page intentionally left blank.

1420 Austin Bluffs Pkwy Colorado Springs, CO 80918 www.uccs.edu